极坐标变换我认为只有一种形式,即令x=rcosθ,y=rsinθ(当然有习惯r写作ρ),其他形式比如x=acosθ,y=bsinθ或者x=arcosθ,y=brsinθ等都是基于广义极坐标变换而得到的。
所谓广义极坐标有些类似于换元法,将某一部分看作一个整体,从而对该整体进行极坐标变换。例如椭圆方程的标准形式,将(x/a)和(y/b)分别看作一个整体,这时利用极坐标变换,令x/a =rcosθ,y/b=rsinθ(这就有了之前的x=arcosθ,y=brcosθ)此时θ【0,2π】,r【0,1】
类似的变换也有x^2+y^2<2x 这时将前式整理可以得到(x-1)^2+y^2<1。如果这时用广义极坐标变换,那就将x-1和y看作一个整体(虽然y就是一个整体…)令x-1=rcosθ,y=rsinθ 这时相当于站在(1,0)处观察,此时θ【0,2π】,r【0,1】. 但是如果使用极坐标变换,就要令x=rcosθ,y=rsinθ 这时相当于站在极点(0,0)处观察,此时θ【-π/2,π/2】,r【0,2cosθ】
以上就是我自己对广义极坐标变换的一些理解,如有不妥欢迎批评指正。
说一下极坐标(广义)变换自己的理解
最新推荐文章于 2025-01-18 21:58:53 发布