AI/LLM应用必读书+1!这本新书出版一个月就广受赞誉,因为它讲透了大模型应用的方方面面!

**前言:**ChatGPT横空出世后,AI/LLM浪潮席卷全球,AI/LLM不再是高高在上的技术,而是每个人都能触及并用来构建应用的工具。 然而,面对日新月异的技术发展、层出不穷的新概念和工具,你是否感到迷茫和不知所措?别担心,这本刚出版一个月的新书——《AI Engineering: Building Applications with Foundation Models》,将为你拨开迷雾,指明方向!

“AI also makes it possible to build applications with minimal coding. First, AI can write code for you, allowing people without a software engineering background to quickly turn their ideas into code and put them in front of their users. Second, you can work with these models in plain English instead of having to use a programming language. Anyone, and I mean anyone, can now develop AI applications.” 随着基础模型的能力增加,普通人从0开发出"补光灯"的应用的门槛大幅降低。

“AI engineering’s rapid growth also induced an incredible amount of hype and FOMO (fear of missing out). The number of new tools, techniques, models, and applications introduced every day can be overwhelming. Instead of trying to keep up with the constantly shifting sand, let’s look into the fundamental building blocks of AI engineering.” 技术迭代太快,与其追逐日新月异的新工具、新技术和模型,不如回归基础,聚焦于AI工程的核心构件。

为什么这本书值得你读?

**1. 新鲜出炉,紧跟前沿技术趋势!**这本书由AI领域资深专家Chip Huyen撰写,2025年1月刚刚出版!内容涵盖了截至目前最新的大模型应用技术和实践经验,让你站在巨人的肩膀上,把握AI发展的脉搏。想进一步了解这本书?不妨收听作者Chip Huyen参与的播客节目AI Engineering with Chip Huyen[1]。

**2. 全面覆盖,大模型应用全景图!**这本书不是简单的教程,而是一本系统、全面讲解大模型应用开发的"百科全书"。它几乎覆盖了LLM应用的方方面面:

第一章:Introduction to Building AI Applications with Foundation Models

要点: 介绍AI应用构建的基础知识,包括AI工程的兴起、与传统ML工程的区别、AI应用栈的组成等。帮你评估是否需要构建AI应用,以及如何规划AI项目。

第二章:Understanding Foundation Models

要点: 深入剖析基础模型,包括训练数据、模型架构(重点讲解Transformer)、模型规模、后训练(SFT、RLHF)以及采样策略等。让你了解模型的工作原理,为模型选择和应用打下基础。

第三、四章:Evaluation Methodology & Evaluate AI Systems

要点: 重点讲解评估方法和体系,包括评估指标、评估方法(精确评估、相似度测量、AI作为评判者)、公开基准测试以及如何构建自己的评估流程。这是AI工程中最具挑战性的部分,也是构建可靠AI应用的关键。 •第五章:Prompt Engineering

要点: 深入探讨提示工程(Prompt Engineering),包括提示的组成、上下文学习、提示工程最佳实践、防御性提示工程(对抗提示攻击)等。教你如何编写高效提示,充分发挥模型的潜力。

第六章:RAG and Agents

要点: 介绍RAG(检索增强生成)和Agent,这是构建复杂AI应用的两大核心模式。详细讲解RAG的架构、检索算法、优化方法,以及Agent的组成、工具使用、规划和评估。

第七章:Finetuning

要点: 讲解微调(Finetuning)技术,包括微调的适用场景、内存瓶颈分析、参数高效微调(PEFT,重点讲解LoRA)、模型合并等。让你能够根据特定任务调整模型,提升性能。

第八章:Dataset Engineering

要点: 聚焦数据集工程,包括数据整理(质量、覆盖率、数量)、数据获取与标注、数据增强与合成(重点讲解AI生成数据)、数据处理等。这是训练高质量模型的基石。 •第九章:Inference Optimization

要点: 探讨推理优化,包括推理概述、性能指标、AI加速器、模型优化和推理服务优化等。教你如何让模型运行得更快、更便宜、更安全。

第十章:AI Engineering Architecture and User Feedback

要点: 整合全书内容,构建完整的AI应用架构(逐步构建,从简单到复杂),包括增强上下文、添加防护、模型路由和网关、缓存、Agent模式等。并介绍如何设计用户反馈系统,持续改进应用。

3. 深入浅出,人人都能读懂!这本书最大的亮点在于它的可读性。Chip Huyen以其丰富的实践经验和深入浅出的讲解方式,将复杂的AI概念和技术娓娓道来。

没有晦涩的数学公式和定理证明,取而代之的是清晰的解释和生动的例子。 •没有枯燥的理论推导和代码堆砌,而是结合了大量实际案例和行业洞察,让你在轻松愉快的阅读中掌握核心知识。

总结:《AI Engineering》这本书以其全面性、时效性、实用性和可读性,成为了AI/LLM时代每个从业者和爱好者的必读书籍。它不仅提供了构建大模型应用的技术路线图,更重要的是,它传递了一种系统化的思维方式,帮助读者在快速变化的AI领域中找到方向,抓住机遇。无论你是AI工程师、产品经理、研究人员,还是对AI充满好奇的普通读者,这本书都能为你带来启发和收获。强烈推荐!

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值