【Transformer】浅谈 Transformer-based 模型中的位置表示

本文小结:本文主要对原始 Transformer[1]、RPR[2]以及 Transformer-XL[3] 中使用的位置表示方法,进行详细介绍。从最初的绝对位置编码,与单词嵌入相加作为第一层的输入,再到 RPR 提出直接在注意力分数的计算中引入相对位置信息,并学习相对距离的表示矩阵(长度固定),再到 Transformer-XL 中引入偏置信息,并重新使用 Transformer 中的编码公式生成相对距离的表示矩阵,使长度可泛化。

0. 位置信息

首先简单谈一下位置信息。一般将位置信息简单分为绝对位置信息相对位置信息,并且前者对句子语义的影响不大,更为重要的是后者。

以情感分析 sentiment analysis 为例:

  • like this movie because it doesn't have an overhead history. Positive
  • don'tlike this movie because it has an overhead history. Negative

don’t 与like的相对位置不同,决定了这两句话的情感取向是一正一负的,但在传统词袋(Bag-Of-Words BOW)模型中,这两句话得到的句子表征却是一致的,可见单词的相对位置语义有关键性影响。

再以命名实体识别 Named Entity Recognition 为例[4]

一般而言,在 Inc. 之前的单词为 ORG 而在 in 之后为 TIME 或 LOC ,但是同为 Louis Vuitton ,与 Inc. 相距较远的为PER,指的是创立者(人)这一实体,而相距较近的为ORG,指的是组织(公司)这一实体。可见,单词之间的相对位置在 NER 任务中是十分重要的。

需要注意的是,相对位置是具有方向性的(Inc. 与 in 的相对距离为 -1,1854 与 in 的相对距离为 1)

那么,如何对位置信息进行表示呢?

感兴趣的同学可以看下这篇文章 Encoding Word Order in Complex Embeddings 。

下文结合原始 Transformer,RPR,Transformer-XL 以及相关变体,试解释 Transformer-based 模型中的位置信息的表示问题。

1. 原始 Transformer [1]

原始 Transformer 中使用 Positional Encoding 生成固定的位置表示。

其中,pos 指的是 token 的位置。设句子长度为 L,那么 pos=0,1,...,L-1i 是向量的某一维度,例如 d_{model}=512时,i=0,1,...,255

因此,借助上述正余弦公式,我们可以为每个位置生成 d_{model}维的位置向量。为什么会选择如上公式呢?作者表示:

We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset k, PE_{pos+k}can be represented as a linear function of PE_{pos}

 已知三角函数公式如下:

因此,可以将 PE_{pos+k}可以表示为 PE_{pos}的线性表示如下:

作者希望借助上述绝对位置的编码公式,让模型能够学习到相对位置信息

虽然如此获得的 position embeddings,两者之间的点积能够反应相对距离,但它缺乏方向性,并且这种特性(相对距离)会被原始 Transformer 的注意力机制破坏:[4]

基于公式  (1),位置 t 的位置嵌入可以表示为:

其中, d表示位置嵌入的维度, c_{i}表示由 i决定的常量(1/10000^{2i/d})),由cos(x-y)=sin(x)sin(y)+cos(x)cos(y)可推得:

因此,对于给定的位置 pos 和 偏移量 k 而言,PE^{T}_{pos+k}PE_{pos}只取决于偏移量 k,因此两者的点积可以反映相对距离 k。如上图所示,点积的结果是对称的,并且随\left | k \right |增加而减少(但并不单调)。

此外,由于点积结果只依赖于 k,那么令 j=pos-k,有 PE^{T}_{pos}PE_{pos+k}=PE^{T}_{j}PE_{j+k}=PE^{T}_{pos-k}PE_{pos}对于给定的位置 pos 和 偏移量 k 而言,PE^{T}_{pos}PE_{pos-k}=PE^{T}_{pos}PE_{pos+k},即两者的点积无法反映方向性

但是在 Transformer 中,由于需要经过映射,即两者间的点积实际是 PE^{T}_{pos}W^{T}_{q}PE_{pos+k}并可以视为PE^{T}_{pos}WPE_{pos+k},然而如上图所示,此时并没有看到相对距离 k 的清晰模式。

最后,Transformer 之前的《Convolutional Sequence to Sequence Learning》[5] 以及之后的 BERT[6] 都没有选择使用 Positional Encoding 的方式生成位置表示,而是采取了所谓的“learned and fixed”的可学习的 Position embedding ,也就是去训练一个嵌入矩阵,大小为 L_{max}\times d,这里暂且按下不表。

2. 相对位置表示[2]

Relative Position Representations(以下简称为RPR) 一文中认为,RNN 通常依靠其循环机制,结合t 时刻的输入和前一时刻的隐层状态h_{t-1}计算出h_{t},直接通过其顺序结构沿时间维度捕获相对和绝对位置。而非 RNN 模型不需要顺序处理输入,则需要显式编码才能引入位置信息。

Transformer 中的 Self-attention 机制如下,输入 x=(x_{1},...,x_{n}),输出 z={z_{1},...,z_{n}}\in R^{n\times d}

 

 3. Transformer-XL[3]

首先深入探究 Al-Rfou 等人的做法,下文将其称为 vanilla model。如上图 1.a 所示, vanilla model 将整个语料库拆分为长度受限的片段,并且只在每个片段内训练模型,忽略了来自先前片段的所有上下文信息。这使得训练过程中,信息不会在 forward 或 backward 过程中跨片段流动,而且这使得最大依赖长度受到了片段长度的限制(这本是 Self-attention 的优势)。其次,虽然可以通过 padding 来考虑句子边界或任何其他语义边界,但是在实践中直接简单分块已成为提高效率的标准做法。这也就是作者说的上下文碎片问题。

在评估过程中,vanilla model 也在每一步中消耗与训练中相同长度片段,但仅在最后一个位置进行预测。 然后,在下一步仅将片段向右移动一个位置,并且重新进行计算。如图 1.b 所示,如此可确保每一步预测都能利用训练期间暴露的最长可能上下文,并且还缓解了训练中遇到的上下文碎片问题。 但是,这种评估过程太过昂贵。

这里我们先来看 XL 中的片段循环机制。引入循环机制,在训练过程中,前一片段中的隐藏状态序列(每一层都)会被固定并缓存,以便在处理下一片段时使用其作为「扩展上下文」。如图 2.a 所示,绿色部分表示当前片段使用的扩展上下文。对于每一层而言,输入为前一片段以及当前片段的前一层的输出,从而可以保证对长期依赖的建模能力并避免了上下文碎片问题。

参考

  1. ^abAttention Is All You Need https://arxiv.org/abs/1706.03762
  2. ^abSelf-Attention with Relative Position Representations https://arxiv.org/abs/1803.02155
  3. ^abTransformer-XL: Attentive Language Models Beyond a Fixed-Length Context https://arxiv.org/abs/1901.02860
  4. ^abcTENER: Adapting Transformer Encoder for Name Entity Recognition https://arxiv.org/abs/1911.04474
  5. ^Convolutional Sequence to Sequence Learning https://arxiv.org/abs/1705.03122
  6. ^BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding https://arxiv.org/abs/1810.04805
  7. ^How self-attention with relative position representations works https://medium.com/@_init_/how-self-attention-with-relative-position-representations-works-28173b8c245a
  8. ^Character-Level Language Modeling with Deeper Self-Attention https://arxiv.org/abs/1808.04444
  9. ^Google AI Blog https://ai.googleblog.com/2019/01/transformer-xl-unleashing-potential-of.html
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值