各位同学好,最近学习了CS231N斯坦福计算机视觉公开课,讲的太精彩了,和大家分享一下。
激活函数的作用是把神经元的输入线性求和后,放入非线性的激活函数中激活,正因为有非线性的激活函数,神经网络才能拟合非线性的决策边界,解决非线性的分类和回归问题
1. Sigmoid 函数
作用:将负无穷到正无穷的输入,映射到0到1之间。
公式:
若x=0,函数值=0.5,;若x很大时,函数值非常接近1;若x很小时,函数值非常接近0
特点:
(1)将负无穷到正无穷的任何输入,都挤压成0到1之间的一个数,又称为挤压函数
(2)可解释性好,可类比神经细胞是否激活。函数输出的是0到1之间的值,相当于一个二分类问题,0是一个类别,1是另一个类别
缺陷:
(1)