扩散模型条件生成——Classifier Guidance和Classifier-free Guidance原理解析

1、前言

从讲扩散模型到现在。我们很少讲过条件生成(Stable DIffusion曾提到过一点),所以本篇内容。我们就来具体讲一下条件生成。这一部分的内容我就不给原论文了,因为那些论文并不只讲了条件生成,还有一些调参什么的。并且推导过程也相对复杂。我们从一个比较简单的角度出发。

参考论文:Understanding Diffusion Models: A Unified Perspective (arxiv.org)

参考代码:

classifier guidance:GitHub - openai/guided-diffusion

classifier-free guidance:GitHub - coderpiaobozhe/classifier-free-diffusion-guidance-Pytorch: a simple unofficial implementation of classifier-free diffusion guidance

视频:[扩散模型条件生成——Classifier Guidance和Classifier-free Guidance原理解析-哔哩哔哩]

2、常用的条件生成方法

在diffusion里面,如何进行条件生成呢?我们不妨回忆一下在Stable Diffusion里面的一个常用做法。即在训练的时候。给神经网络输入一个条件。
L = ∣ ∣ ϵ − ϵ θ ( x t , t , y ) ∣ ∣ 2 L=||\epsilon-\epsilon_{\theta}(x_t,t,y)||^2 L=∣∣ϵϵθ(xt,t,y)2
里面的y就是条件。至于为什么有效,请看我之前写过的Stable DIffusion那篇文章。在此不过多赘述了。我们来讲这种方法所存在的问题。

很显然的,这种训练的方式,会有一个问题,那就是神经网络或许会学会忽略或者淡化掉我们输入的条件信息。因为就算我们不输入信息,他也照样能够生成。

接下来我们来讲两种更为流行的方法——分类指导器(Classifier Guidance) 和无分类指导器( Classifier-Free Guidance)

3、Classifier Guidance

为了简单起见。我们从分数模型的角度出发。

回忆一下在SDE里面的结论。其反向过程为
d x = [ f ( x , t ) − g ( t ) 2 ∇ x log ⁡ p t ( x ) ] d t + g ( t ) d w ˉ (1) \mathbb{dx}=\left[\mathbb{f(x,t)}-g(t)^2\nabla_x\log p_t(x)\right]\mathbb{dt}+g(t)\mathbb{d\bar w}\tag{1} dx=[f(x,t)g(t)2xlogpt(x)]dt+g(t)dwˉ(1)
如果施加条件的话,还是根据Reverse-time diffusion equation models - ScienceDirect这篇论文,可得条件生成时的反向SDE为
d x = [ f ( x , t ) − g ( t ) 2 ∇ x log ⁡ p t ( x ∣ y ) ] d t + g ( t ) d w ˉ (2) \mathbb{dx}=\left[\mathbb{f(x,t)}-g(t)^2\nabla_x\log p_t(x|y)\right]\mathbb{dt}+g(t)\mathbb{d\bar w}\tag{2} dx=[f(x,t)g(t)2xlogpt(xy)]dt+g(t)dwˉ(2)
我们利用贝叶斯公式,对 ∇ x log ⁡ p t ( x ∣ y ) \nabla x \log p_t(x|y) xlogpt(xy)进行处理
∇ x log ⁡ p t ( x ∣ y ) = ∇ x log ⁡ p t ( y ∣ x ) p t ( x ) p t ( y ) = ∇ x ( log ⁡ p t ( y ∣ x ) + log ⁡ p t ( x ) − log ⁡ p t ( y ) ) = ∇ x log ⁡ p t ( x ) + ∇ x log ⁡ p t ( y ∣ x ) \begin{aligned}\nabla_x \log p_t(x|y)=&\nabla_x\log\frac{p_t(y|x)p_t(x)}{p_t(y)}\\=&\nabla_x\left(\log p_t(y|x)+\log p_t(x)-\log p_t(y)\right)\\=&\nabla_x \log p_t(x)+\nabla_x\log p_t(y|x)\end{aligned}\nonumber xlogpt(xy)===xlogpt(y)pt(yx)pt(x)x(logpt(yx)+logpt(x)logpt(y))xlogpt(x)+xlogpt(yx)
第二个等号到第三个等号是因为对 log ⁡ p t ( y ) \log p_t(y) logpt(y)关于x求梯度等于0( log ⁡ p t ( y ) \log p_t(y) logpt(y)与x无关)

把它代入Eq.(2)可得
d x = [ f ( x , t ) − g ( t ) 2 ( ∇ x log ⁡ p t ( x ) + ∇ x log ⁡ p t ( y ∣ x ) ) ] d t + g ( t ) d w ˉ (3) \mathbb{dx}=\left[\mathbb{f(x,t)}-g(t)^2\left(\nabla_x\log p_t(x)+\nabla_x\log p_t(y|x)\right)\right]\mathbb{dt}+g(t)\mathbb{d\bar w}\tag{3} dx=[f(x,t)g(t)2(xlogpt(x)+xlogpt(yx))]dt+g(t)dwˉ(3)
对比Eq.(1)和Eq.(3)。我们不难发现,它们的差别,居然是只多了一个 ∇ x log ⁡ p t ( y ∣ x ) \nabla_x\log p_t(y|x) xlogpt(yx)

p t ( y ∣ x ) p_t(y|x) pt(yx)是什么?是以 x x x作为条件,时间为t对应条件y的概率。我们可以怎么求呢?该怎么求出来呢?

当然是使用神经网络了。也就是说,我们可以额外设定一个神经网络,该神经网络输入是 x t x_t xt,输出是条件为y的概率

所以,实际上我们现在需要训练两部分,一部分是 ∇ x log ⁡ p t ( x ) \nabla_x\log p_t(x) xlogpt(x),这我们在SDE中已经讲过该如何训练了。

另一个就是 ∇ x log ⁡ p t ( y ∣ x ) \nabla_x\log p_t(y|x) xlogpt(yx),他就是一个分类神经网络网络。训练好之后,我们就可以使用Eq.(3)通过不同的数值求解器,进行优化了。

作者在此基础上,又引入了一个控制参数 λ \lambda λ
∇ x log ⁡ p t ( x ∣ y ) = ∇ x log ⁡ p t ( x ) + λ ∇ x log ⁡ p t ( y ∣ x ) (4) \nabla_x \log p_t(x|y)=\nabla_x\log p_t(x)+\lambda\nabla_x\log p_t(y|x)\tag{4} xlogpt(xy)=xlogpt(x)+λxlogpt(yx)(4)
λ = 0 \lambda=0 λ=0,表示不加入任何条件。当 λ \lambda λ很大时,模型会产生大量附带条件信息的样本。

这种方法的一个缺点就是,需要额外学习一个分类器 p t ( y ∣ x ) p_t(y|x) pt(yx)

4、Classifier-Free Guidance

之前推出
∇ x log ⁡ p t ( x ∣ y ) = ∇ x log ⁡ p t ( x ) + ∇ x log ⁡ p t ( y ∣ x ) (5) \nabla_x \log p_t(x|y)=\nabla_x \log p_t(x)+\nabla_x\log p_t(y|x)\tag{5} xlogpt(xy)=xlogpt(x)+xlogpt(yx)(5)
把该式子代入Eq.(4)可得
∇ x log ⁡ p t ( x ∣ y ) = ∇ x log ⁡ p t ( x ) + λ ( ∇ x log ⁡ p t ( x ∣ y ) − ∇ x log ⁡ p t ( x ) ) = ∇ x log ⁡ p t ( x ) + λ ∇ x log ⁡ p t ( x ∣ y ) − λ ∇ x log ⁡ p t ( x ) = ( 1 − λ ) ∇ x log ⁡ p t ( x ) + λ ∇ x log ⁡ p t ( x ∣ y ) \begin{aligned}\nabla_x \log p_t(x|y)=&\nabla_x\log p_t(x)+\lambda\left(\nabla_x\log p_t(x|y)-\nabla_x\log p_t(x)\right)\\=&\nabla_x\log p_t(x)+\lambda\nabla_x\log p_t(x|y)-\lambda\nabla_x\log p_t(x)\\=&\left(1-\lambda\right)\nabla_x\log p_t(x)+\lambda\nabla_x\log p_t(x|y)\end{aligned}\nonumber xlogpt(xy)===xlogpt(x)+λ(xlogpt(xy)xlogpt(x))xlogpt(x)+λxlogpt(xy)λxlogpt(x)(1λ)xlogpt(x)+λxlogpt(xy)
此时我们注意到,当 λ = 0 \lambda=0 λ=0是,第二项完全为0,会忽略掉条件;当 λ = 1 \lambda=1 λ=1时,使用第二项,第二项就是附带有条件情况下的分布分数网络;而当 λ > 1 \lambda> 1 λ>1,模型会优化考虑条件生成样本,并且远离第一项的无条件分数网络的方向,换句话说,它降低了生成不使用条件信息的样本的概率,而有利于生成明确使用条件信息的样本。

事实上,如果你看了free-Classifier Guidance这篇论文,会发现我们的结论不一样。

其实论文里面的控制参数是 w w w,也就是说,Eq.(4)就变成了这样
∇ x log ⁡ p t ( x ∣ y ) = ∇ x log ⁡ p t ( x ) + w ∇ x log ⁡ p t ( y ∣ x ) \nabla_x \log p_t(x|y)=\nabla_x\log p_t(x)+w\nabla_x\log p_t(y|x) xlogpt(xy)=xlogpt(x)+wxlogpt(yx)
我们把控制参数改成 1 + w 1+w 1+w不会有任何影响
∇ x log ⁡ p t ( x ∣ y ) = ∇ x log ⁡ p t ( x ) + ( 1 + w ) ∇ x log ⁡ p t ( y ∣ x ) \nabla_x \log p_t(x|y)=\nabla_x\log p_t(x)+(1+w)\nabla_x\log p_t(y|x) xlogpt(xy)=xlogpt(x)+(1+w)xlogpt(yx)
把Eq.(5)代入该式子
∇ x log ⁡ p t ( x ∣ y ) = ∇ x log ⁡ p t ( x ) + ( 1 + w ) ( ∇ x log ⁡ p t ( x ∣ y ) − ∇ x log ⁡ p t ( x ) ) = ∇ x log ⁡ p t ( x ) + ( 1 + w ) ∇ x log ⁡ p t ( x ∣ y ) − ( 1 + w ) ∇ x log ⁡ p t ( x ) = ( 1 + w ) ∇ x log ⁡ p t ( x ∣ y ) − w ∇ x log ⁡ p t ( x ) (6) \begin{aligned}\nabla_x \log p_t(x|y)=&\nabla_x\log p_t(x)+(1+w)\left(\nabla_x\log p_t(x|y)-\nabla_x\log p_t(x)\right)\\=&\nabla_x\log p_t(x)+(1+w)\nabla_x\log p_t(x|y)-(1+w)\nabla_x\log p_t(x)\\=&(1+w)\nabla_x\log p_t(x|y)-w\nabla_x\log p_t(x)\end{aligned}\tag{6} xlogpt(xy)===xlogpt(x)+(1+w)(xlogpt(xy)xlogpt(x))xlogpt(x)+(1+w)xlogpt(xy)(1+w)xlogpt(x)(1+w)xlogpt(xy)wxlogpt(x)(6)
这就是原论文里面的结论。

那么接下来,我们来探讨一下该如何去训练。

对于 ∇ x log ⁡ p t ( x ) \nabla_x\log p_t(x) xlogpt(x),这个不用说了,之前我们训练的就是这个;如何计算 ∇ x log ⁡ p t ( x ∣ y ) \nabla_x\log p_t(x|y) xlogpt(xy)呢,它实际上就是在给定y的情况下,求出 p t ( x ∣ y ) p_t(x|y) pt(xy)。那我们可以怎么做呢?

在NCSN,我们是使用一个加噪分布 q ( x ~ ∣ x ) q(\tilde x|x) q(x~x)取代 p ( x ) p(x) p(x),而从让它是可解的。

对于 p t ( x ∣ y ) p_t(x|y) pt(xy),即便是加多了一个条件之后,我们仍然建模为 q ( x ~ ∣ x ) q(\tilde x|x) q(x~x),也就是说,我们仍然把它建模成一个正向加噪过程。因此,无论是否增加条件。最终的损失函数结果都是
L = ∣ ∣ s θ − ∇ x log ⁡ q ( x ~ ∣ x ) ∣ ∣ 2 = ∣ ∣ s θ − ∇ x log ⁡ q ( x t ∣ x 0 ) ∣ ∣ 2 L=||s_\theta-\nabla_x\log q(\tilde x|x)||^2=||s_\theta-\nabla_x\log q(x_t|x_0)||^2 L=∣∣sθxlogq(x~x)2=∣∣sθxlogq(xtx0)2
后者是通过SDE统一的结果(我在SDE那一节讲过)

那该如何体现条件y呢?其实我们在第二节的时候已经说过了,就是在里面神经网络的输出加入一个条件y。
L = ∣ ∣ s θ ( x t , t , y ) − ∇ x log ⁡ q ( x t ∣ x 0 ) ∣ ∣ 2 (7) L=||s_\theta(x_t,t,y)-\nabla_x\log q(x_t|x_0)||^2\tag{7} L=∣∣sθ(xt,t,y)xlogq(xtx0)2(7)
而不施加条件的时候,长这样
L = ∣ ∣ s θ ( x t , t ) − ∇ x log ⁡ q ( x t ∣ x 0 ) ∣ ∣ 2 (8) L=||s_\theta(x_t,t)-\nabla_x\log q(x_t|x_0)||^2\tag{8} L=∣∣sθ(xt,t)xlogq(xtx0)2(8)
由Eq.(5)可知,我们需要训练两种情况,一种是有条件的,对应Eq.(7);另外一种是无条件的,对应Eq.(8)。

理论上,我们其实也是要训练两个神经网络。但实际上,我们可以把他们结合成一种神经网络。

具体操作就是把无条件的情况作为一种特例。

当我们训练有条件的神经网络的时候,会照样把条件输入进网络里面。而训练无条件的时候,我们构造一个无条件的标识符,把它作为条件输入给神经网络,比如对于所有无条件的情况,我都构造一个0作为条件输入到神经网络里面。通过这种方式,我们就可以把两个网络变成一个网络了,

对于损失函数,直接使用Eq.(7)。我们在SDE里面讲过 ∇ x log ⁡ p ( x ) = − 1 σ ϵ \nabla_x \log p(x)=-\frac{1}{\sigma}\epsilon xlogp(x)=σ1ϵ。所以我们最终我们把预测噪声,变成了预测分数。我们同样可以把它变回来,变成预测分数
L = ∣ ∣ ϵ − ϵ θ ( x t , t , y ) ∣ ∣ 2 L=||\epsilon-\epsilon_{\theta}(x_t,t,y)||^2 L=∣∣ϵϵθ(xt,t,y)2
所以损失函数就变成了这样。在训练的时候,作者设定一个大于等于0,小于等于1的超参数 p u n c o n d p_{uncond} puncond,它的作用就是判断是否需要输入条件(从0-1分布采样一个值,大于 p u n c o n d p_{uncond} puncond则使用条件,反之则不使用)。也就是说,这相当于dropout一样,随机舍弃掉一些条件,把他们作为无条件的情况(因为我们既要学习有条件的,又要学习无条件的)。所以,最终的训练过程就是这样

在这里插入图片描述

其中里面的 λ \lambda λ你就当作是时刻t吧(其实不是,其实是时刻t的噪声(噪声的初始化不一样,不是传统的等差数列,是用三角函数初始化的)。由于与本篇内容无关,故而忽略),c是条件。

同样的,采用过程使用Eq.(6)的结构进行采样

在这里插入图片描述

5、结束

在这里插入图片描述

  • 24
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
classifier-free diffusion guidance(无分类器扩散引导)是一种新兴的技术,用于在无需提前训练分类器的情况下进行目标导航。 传统的目标导航技术通常需要使用先验知识和已经训练好的分类器来辨别和识别目标。然而,这些方法存在许多限制和缺点,如对精确的先验知识的需求以及对大量标记数据的依赖。 相比之下,classifier-free diffusion guidance 可以在目标未知的情况下进行导航,避免了先验知识和训练好的分类器的依赖。它的主要思想是利用传感器和环境反馈信息,通过推测和逐步调整来实现导航。 在这种方法中,机器人通过感知环境中的信息,例如物体的形状、颜色、纹理等特征,获取关于目标位置的信息。然后,它将这些信息与先验的环境模型进行比较,并尝试找到与目标最相似的区域。 为了进一步提高导航的准确性,机器人还可以利用扩散算法来调整自己的位置和方向。通过比较当前位置的特征与目标位置的特征,机器人可以根据这些差异进行调整,逐渐接近目标。 需要注意的是,classifier-free diffusion guidance还处于研究阶段,目前还存在许多挑战和问题。例如,对于复杂的环境和多个目标,算法的性能可能会下降。然而,随着技术的发展,我们可以预见classifier-free diffusion guidance将会在未来的目标导航中发挥重要的作用。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值