谷歌神器-NotebookLM的这个隐藏功能,一次上传50篇文献,AI自动整理+引文,厉害了!

我是娜姐 @迪娜学姐 ,一个SCI医学期刊编辑,探索用AI工具提效论文写作和发表。 
 

图片

          

之前娜姐学员群有同学提出了这个需求:能不能一次上传几百篇文献,让AI分析总结?
 

图片

          

我当时一口否定了。因为据我测试,当前的大模型ChatGPT,Claude,国内的Kimi,包括当红的DeekSeek,号称能一次分析10篇PDF,但是同时对文件大小也有限制。一般上传5篇就到上限了。几百篇更不可能。

          

但是,最近娜姐又尝试了谷歌的NotebookLM,发现它居然可以实现一次性分析50篇文献,而且还带引文出处,特别适合需要深入分析和组织大量研究资料的学术工作者。

              

图片

          

关于NotebookLM,之前我写过一篇文章,介绍它的文档转博客功能,可以实现做实验、开车的闲暇时间“听”文献:

没时间读文献,谷歌AI工具NotebookLM 带你5分钟听懂一篇论文

          

          

这篇娜姐再介绍几个它的隐藏功能:

          

1. 快速了解一个研究主题
 

日常进行文献综述,我们通常会根据关键词,下载一批相关文献。但是,且不说好不容易把一批文献都过了一遍,内容已经忘得七七八八,但是还没完,最重要的一步,最后还的将这一批文献的信息进行汇总分类。这才算是有效阅读了。

文献综述太难了。

          

现在,NotebookLM可以轻松帮你搞定这件事了。首先,批量上传我们需要阅读分析的文献,让它帮我们分析总结关键信息:    

          

图片

          

NotebookLM会搜索你上传的所有文献,并找到与你的问题相关的内容,总结成综述段落。更重要的是,它会带上引文出处和相关内容所在段落,方便你核实对错:

          

图片

          

引文和内容出处都有了。这样一来,所有的信息源都可查证,大大减少了大模型的幻觉缺陷。    

          

针对它的总结内容,你还可以继续在下方对话框提问,让NotebookLM就某一个点详细展开,它的回复内容全部是基于你上传的这一批文献。

          

NotebookLM支持多种文件格式,包括PDF、书籍、网页链接等,可以一次性上传多达50个来源,方便整合各类研究材料。并且上下文窗口有50万字,秒杀其他模型了。

          

2 考前复习

          

因为NotebookLM可以上传一本几十M的书籍,所以如果你考前要快速复习某一本书的内容,或者阅读一本书,可以直接上传电子版书籍,然后针对书中的重点概念,或者还比较薄弱的章节,和NotebookLM进行问答,快速查漏补缺。

          

比如我上传了一本免疫学经典书籍,然后开始快速学习:

图片

          

最棒的是它的回复中引用了来自书中的章节出处,方便我快速定位和查证。    

          

此外,右侧还会自动生成音频2人对谈播客,甚至如果你不知道该怎么学习,它还有一个学习指导study guide功能,手把手教你该怎么学:
 

图片

          

点击Study guide,会显示和书中内容相关的启发性问题以及相关答案:    

图片

          

如果你要通过某一门考试,上传复习资料和考试书籍,然后让它给你汇总关键知识点,指导你复习,不会的继续问它,可比你东一榔头西一棒子,一点点毫无章法的啃知识点效率高太多了。

NotebookLM绝对是你的考试通关利器。

          

网址如下:

https://notebooklm.google.com/

          

          

谷歌作为Transformer机制的发明者,AI界鼻祖,好东西还是很多的。包括娜姐之前介绍过的Deep Research功能,也是文献综述的一把利器:

谷歌Gemini 2.0更新,新增的智能体Agent写文献综述,太强大了!    

          

          

今天就介绍到这。

如果觉得有用,欢迎在看、转发和点赞,一键三连!娜姐继续输出有用的AI辅助科研写作、绘图相关技巧和知识。

### NotebookLM IT 技术相关信息 #### 功能预览与发展 在今年五月的 I/O 大会上,展示了 NotebookLM 的新功能预览版。当时发布的版本是一个基于内容的聊天界面,受到了许多用户的欢迎和使用。与此同时,研究团队正在探索 Google 推出的新模型和技术升级,例如即将发布的 Gemini 1.5 模型,旨在进一步提升 NotebookLM 的性能和服务质量[^1]。 #### 技术架构与实现 为了更好地理解 NotebookLM 的技术架构,可以从以下几个方面来探讨: - **自然语言处理 (NLP)**:作为一款基于对话的人工智能产品,NotebookLM 利用了先进的 NLP 技术,能够理解和生成人类语言,提供更加流畅和智能化的服务。 - **机器学习框架**:该平台可能采用了 TensorFlow 或 PyTorch 等流行的深度学习库来进行训练和发展新的算法模型。这有助于持续改进系统的响应速度、准确性等方面的表现。 ```python import tensorflow as tf from transformers import TFAutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('bert-base-cased') model = TFAutoModelForSequenceClassification.from_pretrained('bert-base-cased') def classify_text(text): inputs = tokenizer(text, return_tensors='tf', truncation=True, padding=True) outputs = model(**inputs) predictions = tf.nn.softmax(outputs.logits).numpy() return predictions.argmax(axis=-1) classify_text("This is a test sentence.") ``` #### 应用场景拓展 除了基本的文字交流外,随着技术的进步,未来可能会看到更多创新的应用形式出现。例如,在教育领域内创建个性化的辅导机器人;或是应用于企业内部的知识管理系统中,帮助员工快速获取所需资料并提高工作效率等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值