Google NotebookLM 简明教程

在皮克斯动画工作室,他们使用一种称为“智囊团”的流程——一群最优秀的故事讲述者和导演聚在一起,公开批评和集思广益。这一过程帮助将原始想法提炼成《玩具总动员》和《头脑特工队》等大片。

但是,如果你没有“智囊团”来帮助你塑造想法,该怎么办?这就是技术发挥作用的地方。谷歌的 NotebookLM 旨在成为你的人工智能头脑风暴助手。那么,它是什么?NotebookLM 有什么用?

我决定测试一下,我发现了一些很酷的东西。系好安全带!

1、Google 的 NotebookLM 是什么?

NotebookLM 的初始界面

NotebookLM 是 Google 实验室的一款实验性产品,专注于改善我们与笔记和文档的交互方式。它使用 AI 帮助用户更有效地提取、总结和处理内容。NotebookLM 不仅仅是存储信息,还允许用户更有意义地与笔记互动,从而更轻松地找到关键点或获得简明的文档概述。它专为希望简化笔记记录和分析过程的任何人而设计。

2、NotebookLM 的核心功能

我对 NotebookLM 进行了一些尝试,以下是我发现的一些关键功能:

2.1 文档上传和交互

该工具的第一个核心功能是能够上传 PDF、.txt、Markdown 和音频文件。我决定上传我们的博客文章来测试一下。

上传 PDF 并从 NotebookLM 获取建议

上传完成后,我得到了所有这些选项可供选择。我可以创建音频版本或进一步聊天以获得我想要的内容。

用户还可以上传音频文件以获取记录或了解音频中正在讨论的内容的摘要。我喜欢它给我多个建议。你可以上传文件,然后聊天以获取分析或摘要。

除了上传文件外,你还可以从 Google Drive(文档和幻灯片)添加来源,或指向网站、Youtube

### NotebookLM IT 技术相关信息 #### 功能预览与发展 在今年五月的 I/O 大会上,展示了 NotebookLM 的新功能预览版。当时发布的版本是一个基于内容的聊天界面,受到了许多用户的欢迎和使用。与此同时,研究团队正在探索 Google 推出的新模型和技术升级,例如即将发布的 Gemini 1.5 模型,旨在进一步提升 NotebookLM 的性能和服务质量[^1]。 #### 技术架构与实现 为了更好地理解 NotebookLM 的技术架构,可以从以下几个方面来探讨: - **自然语言处理 (NLP)**:作为一款基于对话的人工智能产品,NotebookLM 利用了先进的 NLP 技术,能够理解和生成人类语言,提供更加流畅和智能化的服务。 - **机器学习框架**:该平台可能采用了 TensorFlow 或 PyTorch 等流行的深度学习库来进行训练和发展新的算法模型。这有助于持续改进系统的响应速度、准确性等方面的表现。 ```python import tensorflow as tf from transformers import TFAutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('bert-base-cased') model = TFAutoModelForSequenceClassification.from_pretrained('bert-base-cased') def classify_text(text): inputs = tokenizer(text, return_tensors='tf', truncation=True, padding=True) outputs = model(**inputs) predictions = tf.nn.softmax(outputs.logits).numpy() return predictions.argmax(axis=-1) classify_text("This is a test sentence.") ``` #### 应用场景拓展 除了基本的文字交流外,随着技术的进步,未来可能会看到更多创新的应用形式出现。例如,在教育领域内创建个性化的辅导机器人;或是应用于企业内部的知识管理系统中,帮助员工快速获取所需资料并提高工作效率等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值