SciSpace是一个针对学术科研场景的一站式AI工具,包括单篇/多篇PDF解读,文献综述,AI检测、写作等功能,之前娜姐详细介绍过:
最近SciSpace也推出了deep review--深度综述功能:一款基于多智能体方案的文献综述工具。
娜姐带大家来体验一下,它和OpenAI/Gemini的多智能体Deep Research相比,效果如何。
实测体验:
首先,输入你的研究主题,和OpenAI/Gemini一样,deep review也会进一步和你确认和明确研究范围:
之后,它就自行拆解主题,制定大纲,规划检索关键词,执行检索任务:
最后汇总top20的论文结论,整理成综述报告:
文献都是最新的。点击链接,可以跳转到文末的参考文献列表:
文末还针对各种疗法整理了一个带参考文献引用的表格,这个不错:
参考文献引用格式,可以根据你的需求一键转换,还可以对输出内容以知识点/段落 两种方式切换:
如果你想深入某一个主题,文末的Related Questions支持你继续深挖:
体验下来,有点像综合了Perplexity deep search、OpenAI/Gemini deep research功能的一款多智能体驱动的学术主题检索工具。
对比一下,SciSpace的深度综述Deep Review,和Gemini、OpenAI的Deep Research有哪些异同?
1 底层模型:
Gemini是2.0 Flash;
OpenAI是ChatGPT o3;
SciSpace的deep review没有明确说明,但是官方将其 AI 助手称为“ChatGPT + SciSpace”的融合产物,即结合了OpenAI ChatGPT的对话能力和SciSpace对学术文献的专业理解。SciSpace Deep Review底层很可能使用了OpenAI的GPT-4等现有大型模型。
2 数据来源:
Gemini deep research:背靠谷歌搜索引擎,可以搜索整个互联网。
OpenAI deep research:主流新闻媒体、pubmed、学术期刊官网等。
SciSpace Deep Review:学术论文语料库。自身宣传包含200M+论文,涵盖Semantic Scholar、PubMed、arXiv等主流论文数据源。
优点:
1 数据源全部是学术论文,且生成的报告文献比较新;
2 参考文献来源真实准确,格式可以自定义。
缺点:
1 单次检索输出的参考文献数量只有20条。
2 深度综述的深度还是不如OpenAI的deep research,和Perplexity相当。它最大的优势就是数据源都是学术论文,且来源准确可信。Perplexity有时候来源不准确,需要自己去核实。
免费用户一天可以体验3次左右,付费每月20美金(学生用户有折扣)。
网址是:https://typeset.io/ 检索框输入问题后,点亮Deep Review就可以免费体验了,值得一试。