原函数与导函数的关系,以及驻点处二阶导函数大于、小于、等于零时,原函数取极小值、极大值或鞍点的情况。

在这里插入图片描述
在这里插入图片描述

  • 由图①可知,当一阶导函数在某点(即驻点)处为0,二阶导函数在该点处小于0时,原函数在该驻点处取极大值;
  • 由图②可知,当一阶导函数在某点(即驻点)处为0,二阶导函数在该点处大于0时,原函数在该驻点处取极小值;
  • 由图③④可知,当一阶导函数在某点(即驻点)处为0,二阶导函数在该点处也为0,且以该点加减一个非常小的δx得到两点,二阶导函数在这两点处的值异号时,该驻点为原函数的鞍点;
  • 由图⑤可知,当一阶导函数在某点(即驻点)处为0,二阶导函数在该点处也为0,且以该点加减一个非常小的δx得到两点,二阶导函数在这两点处的值同号且都大于0时,该驻点为原函数的极小值点;
  • 由图⑥可知,当一阶导函数在某点(即驻点)处为0,二阶导函数在该点处也为0,且以该点加减一个非常小的δx得到两点,二阶导函数在这两点处的值同号且都小于0时,该驻点为原函数的极大值点;
  • 当驻点处二阶导数为0时,还可求其三阶导、四阶导等,直到可以判断出原函数在驻点是极小值点、极大值点还是鞍点为止。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山高月小 水落石出

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值