数学分析(十七)-多元函数微分学4-泰勒公式与极值问题3:泰勒定理【二元函数f在点P₀(x₀,y₀)的泰勒展开式】

本文介绍了二元函数的泰勒定理,详细阐述了二元函数在点P₀(x₀,y₀)的泰勒展开式,并通过实例展示了如何求解二元函数在特定点的泰勒公式,用于近似计算和极值问题的解决。" 132464052,19669826,R语言tcrossprod函数详解:矩阵与向量的交叉积,"['R语言', '矩阵运算', '向量运算', '数据处理']
摘要由CSDN通过智能技术生成

定理17.8 (中值定理)

设二元函数 f f f凸开域 D ⊂ R 2 D \subset \mathbf{R}^{2} DR2上可微, 则对任意两点 P ( a , b ) , Q ( a + h , b + k ) ∈ D P(a, b), Q(a+h, b+k) \in D P(a,b),Q(a+h,b+k)D, 存在实数 θ ( 0 < θ < 1 ) \theta(0<\theta<1) θ(0<θ<1), 使得

f ( a + h , b + k ) − f ( a , b ) = f x ( a + θ h , b + θ k ) h + f y ( a + θ h , b + θ k ) k . ( 8 ) \begin{aligned} & f(a+h, b+k)-f(a, b) \\ = & f_{x}(a+\theta h, b+\theta k) h+f_{y}(a+\theta h, b+\theta k) k . \quad\quad(8) \end{aligned} =f(a+h,b+k)f(a,b)fx(a+θh,b+θk)h+fy(a+θh,b+θk)k.(8)


定理 17.9 (泰勒定理)

若函数 f f f 在点 P 0 ( x 0 , y 0 ) P_{0}\left(x_{0}, y_{0}\right) P0(x0,y0)的某邻域 U ( P 0 ) U\left(P_{0}\right) U(P0) 上有直到 n + 1 n+1 n+1 阶的连续偏导数, 则对 U ( P 0 ) U\left(P_{0}\right) U(P0) 上任一点 ( x 0 + h , y 0 + k ) \left(x_{0}+h, y_{0}+k\right) (x0+h,y0+k), 存在相应的 θ ∈ ( 0 , 1 ) \theta \in(0,1) θ(0,1), 使得

f ( x 0 + h , y 0 + k ) = f ( x 0 , y 0 ) + ( h ∂ ∂ x + k ∂ ∂ y ) f ( x 0 , y 0 ) + 1 2 ! ( h ∂ ∂ x + k ∂ ∂ y ) 2 f ( x 0 , y 0 ) + ⋯ ( 11 ) + 1 n ! ( h ∂ ∂ x + k ∂ ∂ y ) n f ( x 0 , y 0 ) + 1 ( n + 1 ) ! ( h ∂ ∂ x + k ∂ ∂ y ) n + 1 f ( x 0 + θ h , y 0 + θ k ) \begin{aligned} f\left(x_{0}+h, y_{0}+k\right)&= f\left(x_{0}, y_{0}\right) \\ &+\left(h \cfrac{\partial}{\partial x}+k \cfrac{\partial}{\partial y}\right) f\left(x_{0}, y_{0}\right) \\ &+\cfrac{1}{2 !}\left(h \cfrac{\partial}{\partial x}+k \cfrac{\partial}{\partial y}\right)^{2} f\left(x_{0}, y_{0}\right) \\ &+\cdots \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(11) \\ &+ \cfrac{1}{n !}\left(h \cfrac{\partial}{\partial x}+k \cfrac{\partial}{\partial y}\right)^{n} f\left(x_{0}, y_{0}\right) \\ &+\cfrac{1}{(n+1) !}\left(h \cfrac{\partial}{\partial x}+k \cfrac{\partial}{\partial y}\right)^{n+1} f\left(x_{0}+\theta h, y_{0}+\theta k\right) \end{aligned} f(x0+h,y0+k)=f(x0,y0)+(hx+ky)f(x0,y0)+2!1(hx+ky)2f(x0,y0)+(11)+n!1(hx+ky)nf(x0,y0)+(n+1)!1(hx+ky)n+1f(x0+θh,y0+θk)

(11) 式称为二元函数 f f f 在点 P 0 P_{0} P0 n n n泰勒公式, 其中

( h ∂ ∂ x + k ∂ ∂ y ) m f ( x 0 , y 0 ) = ∑ i = 0 m C m i ∂ m ∂ x i ∂ y m − i f ( x 0 , y 0 ) h i k m − i . \left(h \cfrac{\partial}{\partial x}+k \cfrac{\partial}{\partial y}\right)^{m} f\left(x_{0}, y_{0}\right)=\sum_{i=0}^{m} \mathrm{C}_{m}^{i} \cfrac{\partial^{m}}{\partial x^{i} \partial y^{m-i}} f\left(x_{0}, y_{0}\right) h^{i} k^{m-i} . (hx+ky)mf(x0,y0)=i=0mCmixiymimf(x0,y0)hikmi.

  • 一阶泰勒展开式:
    f ( x , y ) ≈ f ( x 0 , y 0 ) + ∂ f ∂ x ∣ ( x 0 , y 0 ) ( x − x 0 ) + ∂ f ∂ y ∣ ( x 0 , y 0 ) ( y − y 0 ) f(x, y) \approx f(x_0, y_0) + \frac{\partial f}{\partial x}\bigg|_{(x_0,y_0)}(x-x_0) + \frac{\partial f}{\partial y}\bigg|_{(x_0,y_0)}(y-y_0) f(x,y)f(x0,y0)+xf (x0,y0)(xx0)+yf (x0,y0)(yy
  • 21
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值