数学分析(十七)-多元函数微分学4-泰勒公式与极值问题1:高阶偏导数【若相应阶数的混合偏导数连续,则混合偏导数与求导顺序无关】

由于 z = f ( x , y ) z=f(x, y) z=f(x,y) 的偏导函数 f x ( x , y ) , f y ( x , y ) f_{x}(x, y), f_{y}(x, y) fx(x,y),fy(x,y) 仍然是自变量 x x x y y y 的函数, 如果它们关于 x x x y y y 的偏导数也存在, 则说函数 f f f具有二阶偏导数, 二元函数的二阶偏导数有如下四种情形:

∂ ∂ x ( ∂ z ∂ x ) = ∂ 2 z ∂ x 2 = f x x ( x , y ) , ∂ ∂ y ( ∂ z ∂ x ) = ∂ 2 z ∂ x ∂ y = f x y ( x , y ) , ∂ ∂ x ( ∂ z ∂ y ) = ∂ 2 z ∂ y ∂ x = f y x ( x , y ) , ∂ ∂ y ( ∂ z ∂ y ) = ∂ 2 z ∂ y 2 = f y ( x , y ) . \begin{array}{l} \cfrac{\partial}{\partial x}\left(\cfrac{\partial z}{\partial x}\right)=\cfrac{\partial^{2} z}{\partial x^{2}}=f_{x x}(x, y), \\[3ex] \cfrac{\partial}{\partial y}\left(\cfrac{\partial z}{\partial x}\right)=\cfrac{\partial^{2} z}{\partial x \partial y}=f_{x y}(x, y), \\[3ex] \cfrac{\partial}{\partial x}\left(\cfrac{\partial z}{\partial y}\right)=\cfrac{\partial^{2} z}{\partial y \partial x}=f_{y x}(x, y), \\[3ex] \cfrac{\partial}{\partial y}\left(\cfrac{\partial z}{\partial y}\right)=\cfrac{\partial^{2} z}{\partial y^{2}}=f_{y}(x, y) . \end{array} x(xz)=x22z=fxx(x,y),y(xz)=xy2z=fxy(x,y),x(yz)=yx2z=fyx(x,y),y(yz)=y22z=fy(x,y).

类似地可定义更高阶的偏导数, z = f ( x , y ) z=f(x, y) z=f(x,y) 的三阶偏导数共有八种情形, 如

∂ ∂ x ( ∂ 2 z ∂ x 2 ) = ∂ 3 z ∂ x 3 = f x 3 ( x , y ) , ∂ ∂ y ( ∂ 2 z ∂ x 2 ) = ∂ 3 z ∂ x 2 ∂ y = f x 2 y ( x , y ) , . . . . . . . . . \begin{array}{l} \cfrac{\partial}{\partial x}\left(\cfrac{\partial^{2} z}{\partial x^{2}}\right)=\cfrac{\partial^{3} z}{\partial x^{3}}=f_{x^{3}}(x, y), \\[3ex] \cfrac{\partial}{\partial y}\left(\cfrac{\partial^{2} z}{\partial x^{2}}\right)=\cfrac{\partial^{3} z}{\partial x^{2} \partial y}=f_{x^{2} y}(x, y), \\[3ex] ......... \end{array} x(x22z)=x33z=fx3(x,y),y(x22z)=x2y3z=fx2y(x,y),.........

例 1
求函数 z = e x + 2 y z=\mathrm{e}^{x+2 y} z=ex+2y 的所有二阶偏导数和 ∂ 3 z ∂ y ∂ x 2 \cfrac{\partial^{3} z}{\partial y \partial x^{2}} yx23z.


由于函数的一阶偏导数是

∂ z ∂ x = e x + 2 y , ∂ z ∂ y = 2 e x + 2 y . \cfrac{\partial z}{\partial x}=\mathrm{e}^{x+2 y}, \quad \cfrac{\partial z}{\partial y}=2 \mathrm{e}^{x+2 y} . xz=ex+2y,yz=2ex+2y.

因此有

∂ 2 z ∂ x 2 = ∂ ∂ x ( ∂ z ∂ x ) = ∂ ∂ x ( e x + 2 y ) = e x + 2 y , ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( ∂ z ∂ x ) = ∂ ∂ y ( e x + 2 y ) = 2 e x + 2 y , ∂ 2 z ∂ y ∂ x = ∂ ∂ x ( ∂ z ∂ y ) = ∂ ∂ x ( 2 e x + 2 y ) = 2 e x + 2 y , ∂ 2 z ∂ y 2 = ∂ ∂ y ( ∂ z ∂ y ) = ∂ ∂ y ( 2 e x + 2 y ) = 4 e x + 2 y ∂ 3 z ∂ y ∂ x 2 = ∂ ∂ x ( ∂ 2 z ∂ y ∂ x ) = ∂ ∂ x ( 2 e x + 2 y ) = 2 e x + 2 y . \begin{array}{c} \cfrac{\partial^{2} z}{\partial x^{2}}=\cfrac{\partial}{\partial x}\left(\cfrac{\partial z}{\partial x}\right)=\cfrac{\partial}{\partial x}\left(\mathrm{e}^{x+2 y}\right)=\mathrm{e}^{x+2 y}, \\[3ex] \cfrac{\partial^{2} z}{\partial x \partial y}=\cfrac{\partial}{\partial y}\left(\cfrac{\partial z}{\partial x}\right)=\cfrac{\partial}{\partial y}\left(\mathrm{e}^{x+2 y}\right)=2 \mathrm{e}^{x+2 y},\\[3ex] \cfrac{\partial^{2} z}{\partial y \partial x}=\cfrac{\partial}{\partial x}\left(\cfrac{\partial z}{\partial y}\right)=\cfrac{\partial}{\partial x}\left(2 \mathrm{e}^{x+2 y}\right)=2 \mathrm{e}^{x+2 y}, \\[3ex] \cfrac{\partial^{2} z}{\partial y^{2}}=\cfrac{\partial}{\partial y}\left(\cfrac{\partial z}{\partial y}\right)=\cfrac{\partial}{\partial y}\left(2 \mathrm{e}^{x+2 y}\right)=4 \mathrm{e}^{x+2 y} \\[3ex] \cfrac{\partial^{3} z}{\partial y \partial x^{2}}=\cfrac{\partial}{\partial x}\left(\cfrac{\partial^{2} z}{\partial y \partial x}\right)=\cfrac{\partial}{\partial x}\left(2 \mathrm{e}^{x+2 y}\right)=2 \mathrm{e}^{x+2 y} . \end{array} x22z=x(xz)=x(ex+2y)=ex+2y,xy2z=y(xz)=y(ex+2y)=2ex+2y,yx2z=x(yz)=x(2ex+2y)=2ex+2y,y22z=y(yz)=y(2ex+2y)=4ex+2yyx23z=x(yx2z)=x(2ex+2y)=2ex+2y.

例 2
求函数 z = arctan ⁡ y x z=\arctan \cfrac{y}{x} z=arctanxy 的所有二阶偏导数.


因为 ∂ z ∂ x = − y x 2 + y 2 , ∂ z ∂ y = x x 2 + y 2 \cfrac{\partial z}{\partial x}=\cfrac{-y}{x^{2}+y^{2}}, \cfrac{\partial z}{\partial y}=\cfrac{x}{x^{2}+y^{2}} xz=x2+y2y,yz=x2+y2x, 所以二阶偏导数为

∂ 2 z ∂ x 2 = ∂ ∂ x ( − y x 2 + y 2 ) = 2 x y ( x 2 + y 2 ) 2 , ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( − y x 2 + y 2 ) = − x 2 − y 2 ( x 2 + y 2 ) 2 , ∂ 2 z ∂ y ∂ x = ∂ ∂ x ( x x 2 + y 2 ) = − x 2 − y 2 ( x 2 + y 2 ) 2 , ∂ 2 z ∂ y 2 = ∂ ∂ y ( x x 2 + y 2 ) = − 2 x y ( x 2 + y 2 ) 2 \begin{array}{l} \cfrac{\partial^{2} z}{\partial x^{2}}=\cfrac{\partial}{\partial x}\left(\cfrac{-y}{x^{2}+y^{2}}\right)=\cfrac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}, \\[3ex] \cfrac{\partial^{2} z}{\partial x \partial y}=\cfrac{\partial}{\partial y}\left(\cfrac{-y}{x^{2}+y^{2}}\right)=-\cfrac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \\[3ex] \cfrac{\partial^{2} z}{\partial y \partial x}=\cfrac{\partial}{\partial x}\left(\cfrac{x}{x^{2}+y^{2}}\right)=-\cfrac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \\[3ex] \cfrac{\partial^{2} z}{\partial y^{2}}=\cfrac{\partial}{\partial y}\left(\cfrac{x}{x^{2}+y^{2}}\right)=\cfrac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}} \end{array} x22z=x(x2+y2y)=(x2+y2)22xy,xy2

  • 25
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值