路径规划: PRM 路径规划算法 (Probabilistic Roadmaps 随机路标图)

本文介绍了PRM(Probabilistic Roadmaps)路径规划算法,一种适用于高维空间和复杂约束环境的基于随机采样技术的方法。PRM通过将连续空间离散化,利用A*等搜索算法在随机采样点构建的图中寻找路径。文章详细阐述了PRM的两个阶段:学习阶段(包括随机点集构建和路径连接)和查询阶段(包括局部路径规划和碰撞检查),并提到了其概率完备但不最优的特性。
摘要由CSDN通过智能技术生成

路径规划作为机器人完成各种任务的基础,一直是研究的热点。研究人员提出了许多规划方法如:
1. A*
2. Djstar
3. D*
4. 随机路标图(PRM)法
2. 人工势场法
2. 单元分解法
4. 快速搜索树(RRT)法等。
传统的人工势场、单元分解法需要对空间中的障碍物进行精确建模,当环境中的障碍物较为复杂时,将导致规划算法计算量较大。
基于 随机采样技术PRM法 可以有效解决 “高维空间” 和 “复杂约束” 中的路径规划问题。

1. 简介

这里写图片描述

如上图所示,PRM(Probabilistic Roadmaps) 是一种基于图搜索的方法,一共分为两个步骤:学习阶段查询阶段

它将连续空间转换成离散空间,再利用A*等搜索算法在路线图上寻找路径,以提高搜索效率。

这种方法能用相对少的随机采样点来找到一个解,对多数问题而言,相对少的样本足以覆盖大部分可行的空间,并且找到路径的概率为1(随着采样数增加,P(找到一条路径)指数的趋向于1)。显然,当采样点太少,或者分布不合理时,PRM算法是不完备的,但是随着采用点的增加,也可以达到完备。所以PRM是概率完备且不最优的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值