https://blog.csdn.net/qtlyx/article/details/50780400
最后的效果就是这样的。很明显可以看到,左下角那个有点像三角函数的关系,Pearson系数(就是线性相关系数)为0,而MIC则有0.8。
摘自:http://tech.ifeng.com/a/20180323/44917506_0.shtml
最大信息系数
最大信息系数(MIC)于 2011 年提出,它是用于检测变量之间非线性相关性的最新方法。用于进行 MIC 计算的算法将信息论和概率的概念应用于连续型数据。
深入细节
由克劳德·香农于 20 世纪中叶开创的信息论是数学中一个引人注目的领域。
信息论中的一个关键概念是熵——这是一个衡量给定概率分布的不确定性的度量。概率分布描述了与特定事件相关的一系列给定结果的概率。
概率分布的熵是「每个可能结果的概率乘以其对数后的和」的负值
为了理解其工作原理,让我们比较下面两个概率分布:
X 轴标明了可能的结果;Y 轴标明了它们各自的概率
左侧是一个常规六面骰子结果的概率分布;而右边的六面骰子不那么均匀。
从直觉上来说,你认为哪个的熵更高呢?哪个骰子结果的不确定性更大?让我们来计算它们的熵,看看答案是什么。
entropy <- function(x