人遗矢

本文介绍了方向导数与偏导数的概念及其区别,强调方向导数考虑的是单侧导数,而偏导数要求左右导数相等。接着探讨了随机变量期望的计算,特别是如何根据随机变量的分布计算期望。在统计部分,通过一个实际样本展示了如何计算经验分布,包括排序、极差计算、组距与组数的确定,以及经验分布函数的构建。最后,解释了经验分布函数在推断总体分布中的作用,并指出当样本数量足够大时,经验分布趋于总体分布。
摘要由CSDN通过智能技术生成

方向导数和偏导的区别

知乎
方向导数是按某一方向的单侧导数(比如0°和180°可以是两个不同值的方向导数);但偏导数要求左右导数相等(此时0°和180°的方向导数应互为相反数,注意180°方向导数和左导数值相反)。

随机变量的期望

求某一随机变量的期望时(积分),积分内要乘上该随机变量的pdf
如x的期望 积x*f(x)
g(x): x为随机变量,则g(x)也为随机变量,积分为 积g(x)*f(x)

E f ( g ( x ) ) E_f(g(x)) Ef(g(x))这种,说明x服从f分布,称为g(x)关于f的期望

经验分布

例:对于总体X,抽取一组大小为10的样本,得到的观察值为:

【1.9,2.5,0.1,0.5,4,5.9,4.5,7.9,7.5,9.9】

第一步:对样本观察值进行排序并且求得极差

排序:【0.1,0.5,1.9,2.5,4,4.5,5.9,7.5,7.9,9.9】

极差:9.9-0.1=9.8 ##最大观察值-最小观察值

第二步:确定组距和组数。

区间:[0:10] ##区间要包含所有的观察值,左右边界值略宽于观测值的边界

组数:这个区间分成多少个组,一般

在这里插入图片描述

组距:将区间[0:10]分成m个小区间,每个小区间的距离叫做组距

在这里插入图片描述

为了方便,小区间被分成了:[0,2),[2,4),[4,6),[6,8),[8,10)

第三步:计算落入各个区间的样本个数(频数),并作总体X的经验分布函数

[0,2)—3个

[2,4)—1个

[4,6)—3个

[6,8)—2个

[8,10)-1个

在这里插入图片描述

第四步:做直方图,获得近似的密度函数

在这里插入图片描述

经验分布函数概念

总体X的分布函数为理论分布,这个往往是未知的,如上例中,我们只能获得样本的观测值,并不知道总体的理论分布函数。所以,我们用经验分布函数去描述总体的分布(推断),用直方图去描述总体X的密度函数(近似)。当我们的观测值足够多,经验分布函数不断接近总体的分布函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值