人遗矢

本文介绍了方向导数与偏导数的概念及其区别,强调方向导数考虑的是单侧导数,而偏导数要求左右导数相等。接着探讨了随机变量期望的计算,特别是如何根据随机变量的分布计算期望。在统计部分,通过一个实际样本展示了如何计算经验分布,包括排序、极差计算、组距与组数的确定,以及经验分布函数的构建。最后,解释了经验分布函数在推断总体分布中的作用,并指出当样本数量足够大时,经验分布趋于总体分布。
摘要由CSDN通过智能技术生成

方向导数和偏导的区别

知乎
方向导数是按某一方向的单侧导数(比如0°和180°可以是两个不同值的方向导数);但偏导数要求左右导数相等(此时0°和180°的方向导数应互为相反数,注意180°方向导数和左导数值相反)。

随机变量的期望

求某一随机变量的期望时(积分),积分内要乘上该随机变量的pdf
如x的期望 积x*f(x)
g(x): x为随机变量,则g(x)也为随机变量,积分为 积g(x)*f(x)

E f ( g ( x ) ) E_f(g(x)) Ef(g(x))这种,说明x服从f分布,称为g(x)关于f的期望

经验分布

例:对于总体X,抽取一组大小为10的样本,得到的观察值为:

【1.9,2.5,0.1,0.5,4,5.9,4.5,7.9,7.5,9.9】

第一步:对样本观察值进行排序并且求得极差

排序:【0.1,0.5,1.9,2.5,4,4.5,5.9,7.5,7.9,9.9】

极差:9.9-0.1=9.8 ##最大观察值-最小观察值

第二步:确定组距和组数。

区间:[0:10] ##区间要包含所有的观察值,左右边界值略宽于观测值的边界

组数:这个区间分成多少个组,一般

在这里插入图片描述

组距:将区间[0:10]分成m个小区间,每个小区间的距离叫做组距

在这里插入图片描述

为了方便,小区间被分成了:[0,2),[2,4),[4,6),[6,8),[8,10)

第三步:计算落入各个区间的样本个数(频数),并作总体X的经验分布函数

[0,2)—3个

[2,4)—1个

[4,6)—3个

[6,8)—2个

[8,10)-1个

在这里插入图片描述

第四步:做直方图,获得近似的密度函数

在这里插入图片描述

经验分布函数概念

总体X的分布函数为理论分布,这个往往是未知的,如上例中,我们只能获得样本的观测值,并不知道总体的理论分布函数。所以,我们用经验分布函数去描述总体的分布(推断),用直方图去描述总体X的密度函数(近似)。当我们的观测值足够多,经验分布函数不断接近总体的分布函数。

内容概要:该题库专为研究生入学考试计算机组成原理科目设计,涵盖名校考研真题、经典教材课后习题、章节题库和模拟试题四大核心模块。名校考研真题精选多所知名高校的计算机组成原理科目及计算机联考真题,并提供详尽解析,帮助考生把握考研命题趋势与难度。经典教材课后习题包括白中英《计算机组成原理》(第5版)和唐朔飞《计算机组成原理》(第2版)的全部课后习题解答,这两部教材被众多名校列为考研指定参考书目。章节题库精选代表性考题,注重基础知识与重难点内容,帮助考生全面掌握考试大纲要求的知识点。模拟试题依据历年考研真题命题规律和热门考点,精心编制两套全真模拟试题,并附标准答案,帮助考生检验学习成果,评估应试能力。 适用群:计划参加研究生入学考试并报考计算机组成原理科目的考生,尤其是需要系统复习和强化训练的学生。 使用场景及目标:①通过研读名校考研真题,考生可以准确把握考研命题趋势与难度,有效评估复习成效;②通过经典教材课后习题的练习,考生可以巩固基础知识,掌握解题技巧;③通过章节题库的系统练习,考生可以全面掌握考试大纲要求的各个知识点,为备考打下坚实基础;④通过模拟试题的测试,考生可以检验学习成果,评估应试能力,为正式考试做好充分准备。 其他说明:该题库不仅提供详细的题目解析,还涵盖了计算机组成原理的各个方面,包括计算机系统概述、数据表示与运算、存储器分层、指令系统、中央处理器、总线系统和输入输出系统等。考生在使用过程中应结合理论学习与实践操作,注重理解与应用,以提高应试能力和专业知识水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值