方向导数和偏导的区别
知乎
方向导数是按某一方向的单侧导数(比如0°和180°可以是两个不同值的方向导数);但偏导数要求左右导数相等(此时0°和180°的方向导数应互为相反数,注意180°方向导数和左导数值相反)。
随机变量的期望
求某一随机变量的期望时(积分),积分内要乘上该随机变量的pdf
如x的期望 积x*f(x)
g(x): x为随机变量,则g(x)也为随机变量,积分为 积g(x)*f(x)
E
f
(
g
(
x
)
)
E_f(g(x))
Ef(g(x))这种,说明x服从f分布,称为g(x)关于f的期望
经验分布
例:对于总体X,抽取一组大小为10的样本,得到的观察值为:
【1.9,2.5,0.1,0.5,4,5.9,4.5,7.9,7.5,9.9】
第一步:对样本观察值进行排序并且求得极差
排序:【0.1,0.5,1.9,2.5,4,4.5,5.9,7.5,7.9,9.9】
极差:9.9-0.1=9.8 ##最大观察值-最小观察值
第二步:确定组距和组数。
区间:[0:10] ##区间要包含所有的观察值,左右边界值略宽于观测值的边界
组数:这个区间分成多少个组,一般
组距:将区间[0:10]分成m个小区间,每个小区间的距离叫做组距
为了方便,小区间被分成了:[0,2),[2,4),[4,6),[6,8),[8,10)
第三步:计算落入各个区间的样本个数(频数),并作总体X的经验分布函数
[0,2)—3个
[2,4)—1个
[4,6)—3个
[6,8)—2个
[8,10)-1个
第四步:做直方图,获得近似的密度函数
经验分布函数概念
总体X的分布函数为理论分布,这个往往是未知的,如上例中,我们只能获得样本的观测值,并不知道总体的理论分布函数。所以,我们用经验分布函数去描述总体的分布(推断),用直方图去描述总体X的密度函数(近似)。当我们的观测值足够多,经验分布函数不断接近总体的分布函数。