线性代数基础

行列式

det(A)=|A|

要点
1 只有方阵才有行列式
2 行列式是方阵的一个属性

本为解一元方程组时的速记符号:
n阶行列式的值 为 n元一次方程组 的解 的分母(每一项解的分母都相同)

余子式 代数余子式

M i j = A 中去除 a i j 所在的行列,剩余元素组成的行列式 M_{ij}=A中去除a_{ij}所在的行列,剩余元素组成的行列式 Mij=A中去除aij所在的行列,剩余元素组成的行列式
A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij

行列式展开

展开行列式值不变 展开行列式值不变 展开行列式值不变

按第i行展开
D = a i 1 A i 1 + a i 2 A i 2 . . . + a i n A i n D=a_{i1}A_{i1}+a_{i2}A_{i2}...+a_{in}A_{in} D=ai1Ai1+ai2Ai2...+ainAin

按第i列展开
D = a 1 i A 1 i + a 2 i A 2 i . . . + a n i A n i D=a_{1i}A_{1i}+a_{2i}A_{2i}...+a_{ni}A_{ni} D=a1iA1i+a2iA2i...+aniAni

注: 0 = a 1 i A 1 j + a 2 i A 2 j . . . + a n i A n j 0=a_{1i}A_{1j}+a_{2i}A_{2j}...+a_{ni}A_{nj} 0=a1iA1j+a2iA2j...+aniAnj
当行列式和元素不为同一行(列)时,其值为0,可用性质2证明

对角行列式

只有对角线上的元素非零

∣ A ∣ = a 11 a 22 . . . a n n |A|=a_{11}a_{22}...a_{nn} A=a11a22...ann

推导:展开即可

另外有斜对角线,计算结果相似,但要注意符号
斜对角线角标之和为(n+1)

三角行列式

对角行列式的一侧元素非零
有上下三角

∣ A ∣ = a 11 a 22 . . . a n n |A|=a_{11}a_{22}...a_{nn} A=a11a22...ann

推导:第一行(列)展开即可

另外有斜上下三角角线,计算结果相似,但要注意符号

行列式的性质

下列性质对行列均成立
→ \rightarrow :推论

1   D = D T 2  互换两行,行列式变号 → 两行相同,行列式为 0 3   k ∣ A ∣ = 某一行乘上 k 4  将某一行的值乘以 k 倍,加到其他行,行列式值不变 5  行列式某一行都是相加,可拆 1\ D=D^T\\ 2\ 互换两行,行列式变号\rightarrow 两行相同,行列式为 0\\ 3\ k|A|=某一行乘上k\\ 4\ 将某一行的值乘以k倍,加到其他行,行列式值不变\\ 5\ 行列式某一行都是相加,可拆 1 D=DT2 互换两行,行列式变号两行相同,行列式为03 kA=某一行乘上k4 将某一行的值乘以k倍,加到其他行,行列式值不变5 行列式某一行都是相加,可拆

矩阵

一些特殊矩阵

对称阵:方阵,且对称轴为主对角线 对称阵:方阵,且对称轴为主对角线 对称阵:方阵,且对称轴为主对角线

0 m × n  零矩阵:不规定形状,但需要所有元素为 0 0_{m\times n}\ 零矩阵:不规定形状,但需要所有元素为0 0m×n 零矩阵:不规定形状,但需要所有元素为0

E n  单位矩阵:主对角线全为 1 的对角矩阵 E_n\ 单位矩阵: 主对角线全为1的对角矩阵 En 单位矩阵:主对角线全为1的对角矩阵

数量矩阵:单位阵 × k 数量矩阵:单位阵\times k 数量矩阵:单位阵×k

梯形阵: 1 )零行全在非零行下面 ( 无论上下梯形 ) 2 )递减 ( 增 ) 是严格的 3 )严格来说“对角线”方向必须是沿主对角线方向,数在右边叫上梯形,左边叫下 4 )中间可以有 0 梯形阵:\\ 1)零行全在非零行下面(无论上下梯形)\\ 2)递减(增)是严格的 \\ 3)严格来说“对角线”方向必须是沿主对角线方向,数在右边叫上梯形,左边叫下\\ 4)中间可以有0 梯形阵:1)零行全在非零行下面(无论上下梯形)2)递减()是严格的3)严格来说对角线方向必须是沿主对角线方向,数在右边叫上梯形,左边叫下4)中间可以有0

加减数乘

A+B :矩阵对应元素相加(减)
cA:每一元素都×c


矩阵乘法

AB
公式表示太复杂
相乘方法为:前行后列遍历

要点如下
1 只有A的列=B的行 才能相乘
2 结果矩阵:A的行数,B的列数
3 结果矩阵对应位置,为AB对应行列的内积
4 A ( B + C ) = A B + B C A(B+C)=AB+BC A(B+C)=AB+BC(分配律)
5 A ( B C ) = ( A B ) C (结合律) A(BC)=(AB)C(结合律) A(BC)=(AB)C(结合律)

有三点与数乘不同:
6 无交换律: A B ≠ B A AB\neq BA AB=BA
7 无消去律: A B = A C  不能推出  B = C AB=AC\ 不能推出\ B=C AB=AC 不能推出 B=C
8 存在非零的零因子: 非零矩阵 A , B      仍有可能  A B = 0 非零矩阵A,B\ \ \ \ \ 仍有可能\ AB=0 非零矩阵A,B     仍有可能 AB=0

矩阵的逆

与原阵乘积为单位阵的矩阵

A A − 1 = A − 1 A = I n × n AA^{-1}=A^{-1}A=I_{n\times n} AA1=A1A=In×n

要点如下
1 只有方阵才有逆
2 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1(注意顺序)
3 ( c A ) − 1 = c − 1 A − 1 (cA)^{-1}=c^{-1}A^{-1} (cA)1=c1A1
4 二阶逆阵快速计算


乘积 转置

( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT











向量间

a = ( a 1 , a 2 . . . a n ) T a=(a_1,a_2...a_n)^T a=(a1,a2...an)T
b = ( b 1 , b 2 . . . b n ) T b=(b_1,b_2...b_n)^T b=(b1,b2...bn)T

向量内积(点乘)

内积为一个数,两向量对应元素相乘求和

< a , b > = a T b = b T a = ∑ a i b i <a,b>=a^Tb=b^Ta=\sum a_ib_i <a,b>=aTb=bTa=aibi

自身内积开方

∣ ∣ a ∣ ∣ = a T a ||a||=\sqrt{a^Ta} ∣∣a∣∣=aTa

正交向量

内积为0的两个向量正交

a T b = 0 a^Tb=0 aTb=0

矩阵间

A = ( a i j ) n × m A=(a_{ij})_{n\times m} A=(aij)n×m
B = ( a i j ) m × p B=(a_{ij})_{m\times p} B=(aij)m×p

相似

若存在n阶可逆P
使得 P − 1 A P = B P^{-1}AP=B P1AP=B
则称A与B相似

1 方阵才有相似
2 任何方阵都有相似阵


Jordan阵

1 任何一个矩阵都与Jordan阵相似

对角化

向量和矩阵之间

特征值 特征向量

A为n阶方阵

A × μ = λ × μ A\times \mu = \lambda\times \mu A×μ=λ×μ

则称 , λ \lambda λ为特征值 μ \mu μ为特征向量
特征向量不为零


行列式

特征多项式

f A ( λ ) = ∣ λ I − A ∣ f_A(\lambda)=|\lambda I-A| fA(λ)=λIA

该行列式称为矩阵A的特征多项式

1 f A ( λ ) = 0 ↔ λ 为 A 的特征值 f_A(\lambda)=0\leftrightarrow \lambda为A的特征值 fA(λ)=0λA的特征值
2 将特征多项式展开,可得:
∑ λ = t r ( A ) \sum\lambda=tr(A) λ=tr(A)
Π λ = d e t ( A ) \Pi \lambda=det(A) Πλ=det(A)

特征根

例:特征多项式如下:
f A ( λ ) = ( λ − 1 ) ( λ + 2 ) 4 f_A(\lambda)=(\lambda-1)(\lambda+2)^4 fA(λ)=(λ1)(λ+2)4
则称:
λ = 1 \lambda=1 λ=1为一重特征根
λ = − 2 \lambda=-2 λ=2为四重特征根

矩阵的秩 及性质

rank(A) = 矩阵中独立的行(列)数
在这里插入图片描述
行秩==列秩

用初等行变换将矩阵A化为阶梯形矩阵,则矩阵中非零行的个数就定义为这个矩阵的秩,记为r(A)

满秩不可逆

在这里插入图片描述

幂等矩阵 及性质

在这里插入图片描述

向量导数 二次型

在这里插入图片描述

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值