pytorch的detach()函数原理——手动演示

本人的学习记录,请多指点,欢迎交流讨论。

演示代码:

import torch
x = torch.arange(4.0, requires_grad=True)
y = x * x
u = y.detach()#调用之后u就不在是x的函数,变成一个常数
z = u * x#z等于一个常数乘x
z.sum().backward()
print(x.grad)

detach函数作用:它的主要作用是将张量(tensor)从计算图中分离。具体来说,detach() 方法会创建一个新的张量,其值与原始张量相同,但不再与计算图相关联,也就是说,新张量不再具有梯度信息。主要应用场景包括:阻止梯度的传播和将张量作为常量使用。——摘自ChatGPT

从Jupyter中的输出可以看出,detach()改变了是否带有grad_fn,grad_fn 是梯度函数(gradient function)的缩写。在张量(tensor)上执行的操作被称为计算图中的节点。grad_fn 属性存储了创建张量的操作的引用,用于构建梯度计算图。
在这里插入图片描述
在这里插入图片描述
具体计算过程手写如下:
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值