【第 15 章 基于小波的图像压缩技术深度学习机器学习的图像处理应用matlab.】

该博客介绍了使用MATLAB实现基于小波的图像压缩技术,包括主函数、输出和绘图子函数。通过调用'wavedec_process'和'waverec_process'进行分解和重构,并利用'PSNR'函数计算压缩前后图像的质量。案例中展示了压缩前后图像的存储空间对比,并提供了源码分析。
摘要由CSDN通过智能技术生成

第 15 章 基于小波的图像压缩技术–matlab实现深度学习算法整理源码分析

主函数
main.m

clc; clear all; close all;
filename = fullfile(pwd, 'images', 'cameraman.tif');
x = imread(filename);
num = 2;
[cf_vec, dim_vec] = wavedec_process(x, num, 'haar');
th = 10;
y = waverec_process(cf_vec, dim_vec, 'haar', th);
output_img(x, y, filename, th, 'png');
p = PSNR(x,y);
fprintf('\n压缩前后图像的PSNR值为%.2f\n', p);

案例效果展示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
函数目录:
在这里插入图片描述
输出子函数:

function output_img(x, y, filename, th, ext)
if nargin < 5
    ext = 'png';
end
[~, file, ~] = fileparts(filename);
foldername = fullfile(pwd, 'output');
if ~exist(foldername, 'dir')
    mkdir(foldername);
end
file1 = fullfile(foldername, sprintf('%s_origin.%s', file, ext));
file2 = fullfile(foldername, sprintf('%s_wave_%.1f.%s', file, th, ext));
imwrite(x, file1);
imwrite(y, file2);
info1 = imfinfo(file1);
info2 = imfinfo(file2);
fprintf('\n压缩前图像所需存储空间为%.2fbytes', info1.FileSize);
fprintf('\n压缩后图像所需存储空间为%.2fbytes', info2.FileSize);
fprintf('\n文件大小比为%.2f', info1.FileSize/info2.FileSize);

绘图子函数1

function plot_wave_coef(cf_vec)
dn = 3;
num = (length(cf_vec)-1)/dn;
figure;
subplot(num+1, 3, 2);
yt = im2uint8(mat2gray(cf_vec{1}));
imshow(yt, []); 
title(sprintf('近似分量A_{%d}', num));
info = {'垂直细节V', '水平细节H', '对角线细节D'};
ps = 2;   
for i = 1 : num
    for j = 1 : dn
        yt = im2uint8(mat2gray(cf_vec{ps}));
        subplot(num+1, dn, ps+2);
        imshow(yt, []);
        title(sprintf('%s_{%d}', info{j}, num-i+1));
        ps = ps+1;
    end
end

绘图子函数2

function plot_wave_coef_join(cf_vec,dim_vec)
dn = 3;
num = (length(cf_vec)-1)/dn;
tmpa = wkeep(cf_vec{1}, dim_vec(1, :), 'c');
tmpa = im2uint8(mat2gray(tmpa));
tmpa(1, :) = 255; tmpa(end, :) = 255;
tmpa(:, 1) = 255; tmpa(:, end) = 255;
for j = 1:num
    tmpv = wkeep(cf_vec{(j-1)*dn+2}, dim_vec(j, :), 'c');
    tmph = wkeep(cf_vec{(j-1)*dn+3}, dim_vec(j, :), 'c');
    tmpd = wkeep(cf_vec{(j-1)*dn+4}, dim_vec(j, :), 'c');
    tmpv = im2uint8(mat2gray(tmpv));
    tmph = im2uint8(mat2gray(tmph));
    tmpd = im2uint8(mat2gray(tmpd));
    tmpv(1, :) = 255; tmpv(end, :) = 255;
    tmpv(:, 1) = 255; tmpv(:, end) = 255;
    tmph(1, :) = 255; tmph(end, :) = 255;
    tmph(:, 1) = 255; tmph(:, end) = 255;
    tmpd(1, :) = 255; tmpd(end, :) = 255;
    tmpd(:, 1) = 255; tmpd(:, end) = 255;    
    tmp = [tmpa,tmpv;tmph,tmpd];
    stc = size(tmp);
    if stc >= dim_vec(j+1, :)
        tmpa = tmp(1:dim_vec(j+1, 1), 1:dim_vec(j+1,2));
    else
        tmp = tmp([1:end-1, end-2:end-1], [1:end-1, end-2:end-1]);
        tmpa = tmp(1:dim_vec(j+1, 1), 1:dim_vec(j+1,2));
    end
    tmpa = im2uint8(mat2gray(tmpa));
    tmpa(1, :) = 255; tmpa(end, :) = 255;
    tmpa(:, 1) = 255; tmpa(:, end) = 255;
end
figure;
imshow(tmpa, []);
title('小波系数塔式图');

PSNR
离散余弦逆变换中如果不使用8作为系数,而是使用4作为系数的话,图像的画质会变差。来求输入图像和经过离散余弦逆变换之后的图像的峰值信噪比吧!再求出离散余弦逆变换的比特率
峰值信噪比(Peak Signal to Noise Ratio)缩写为PSNR,用来表示信号最大可能功率和影响它的表示精度的破坏性噪声功率的比值,可以显示图像画质损失的程度。

提示:内容整理自:

https://github.com/gzr2017/ImageProcessing100Wen

峰值信噪比越大,表示画质损失越小。峰值信噪比通过下式定义。MAX表示图像点颜色的最大数值。如果取值范围是[0,255]的话,那么MAX的值就为255。参考来源

PSNR处理函数

function S=PSNR(s,t)
[m, n, ~]=size(s);
s = im2uint8(mat2gray(s));
t = im2uint8(mat2gray(t));
s = double(s);
t = double(t);
sd = 0;
mi = m*n*max(max(s.^2));
for u = 1:m
    for v = 1:n
        sd = sd+(s(u,v)-t(u,v))^2;
    end
end
if sd == 0
    sd = 1;
end
S = mi/sd;
S = 10*log10(S);

部分参考:https://blog.csdn.net/weixin_29732003/article/details/122569893
SNR是变异系数的倒数,与变异系数一样,消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响,同时在数值上可能与视觉上的画质质量呈现一个对应关系:
SNR越高,像素的离散程度越低,图像质量(可能)越好。
在这里插入图片描述
本文代码来源整理–>传送门

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海宝7号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值