一文搞懂全连接算法和它的作用

如果你是搞AI算法的同学,相信你在很多地方都见过全连接层。

无论是处理图片的卷积神经网络(CNN),还是处理文本的自然语言处理(NLP)网络,在网络的结尾做分类的时候,总是会出现一个全连接层。

那么到底什么是全连接层,这一层在神经网络中有什么作用,以及它和矩阵乘法、卷积运算有什么关系呢?

在阅读之前,建议先了解一个预备知识。

卷积也好,矩阵乘法也好,其目的都是为了完成神经网络中的特征融合,这是其本质。

神经网络的运算,也是为了更好的完成输入数据的特征提取和融合,从而识别一张图片、一个句子。

就好像我们记住一个人一样,记住的不是他的全部,而是他的特征。

1、什么是全连接层

全连接层(Fully Connected Layer),有时也被叫作密集层(Dense Layer)。

之所以这么叫,是因为这一层的每个神经元都与前一层的每个神经元连接在一起,形成了一个全连接的网络结构,如下所示,每个笑脸都与前一层的所有笑脸相连。

这种全连接的方式与卷积池化不同,卷积和池化是通过固定大小的卷积核或池化窗口在输入上移动,以便有效地捕捉局部特征。

因此,"全连接"强调了这一层中的神经元与前一层中的所有神经元之间的连接,与卷积和池化层的局部连接方式形成对比。

2、全连接有什么作用

既然是所有神经元的全部连接,说明它可以捕获到前面所有的特征,经过运算就可以更加有效、完备的融合所有特征。使得神经网络最终看到的特征是个全局特征(一只猫),而不是局部特征(眼睛或者鼻子)。

有一个蚂蚁开会的比喻来比喻全连接层,比较形象。

假设你是一只蚂蚁,你的任务是找小面包。这时候你的视野比较窄,只能看到很小一片区域,也就只能看到一个大面包的部分。当你找到一片面包之后,你根本不知道你找到的是不是全部的面包,所以你们所有的蚂蚁开了个会,互相把自己找到的面包的信息分享出来,通过开会分享,最终你们确认,哦,你们找到了一个大面包。

上面说的蚂蚁开会的过程,就是全连接,这也是为什么,全连接需要把所有的节点都连接起来,尽可能的完成所有节点的信息共享。

说到这,大概就能理解全连接的作用了吧,那就是可以完成全部特征的融合。

3、全连接和卷积以及矩阵乘的关系

单纯从数学运算上来看,全连接就是矩阵运算,关于矩阵运算的本质,这里说的更清晰一些:5分钟搞懂矩阵乘法的本质

全连接和卷积的区别,除了上面说的前者是全局视野,卷积是局部视野之外,还有一个很重要的联系,那就是如果卷积的卷积核变为1x1,那么相当于卷积核的每一个像素都与输入图片的每一个像素相关联,此时1x1的卷积,也就变成了矩阵乘了。

全连接一般放在一个神经网络的最后,用来做分类。

假设神经网络前面很多层学到了1000个特征,那么最后一层全连接就可以把这1000个特征进行全部融合,融合之后就可以知道这张图片是一只狗,或者这个句子说的是“我爱学习”了。

@董董灿是个攻城狮 本文首发:5分钟搞懂全连接, 写文不易,点个赞再走呗~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

董董灿是个攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值