概念:
自适应池化(Adaptive Pooling)是深度学习中常用的一种池化操作,它能够根据目标输出尺寸自动调整池化窗口的大小和步长,以保证输出特征图的尺寸符合指定的大小。与普通池化(如最大池化、平均池化)不同,普通池化需要手动设置窗口大小和步长,而自适应池化只需要指定输出尺寸即可。
自适应池化能够根据输入特征图的大小和期望的输出尺寸,自动计算池化窗口的大小和步长,从而无需手动指定这些参数。这种灵活性使得网络可以处理不同尺寸的输入,同时保证输出特征图具有固定的尺寸,便于后续的全连接层或其他结构的处理。
在自适应池化中,用户只需要指定输出特征图的空间尺寸(如高度和宽度),池化层会根据输入特征图的大小和指定的输出尺寸,自动调整池化窗口的大小和步长。
常见的自适应池化包括:
- 自适应最大池化(Adaptive Max Pooling)
- 自适应平均池化(Adaptive Average Pooling)
它们分别对每个池化窗口内的元素取最大值或平均值。
在 PyTorch 中,可以通过以下方式使用自适应池化:
import torch
import torch.nn as nn
# 示例输入 (batch_size=1, channel=3, height=10, width=10)
input = torch.randn(1, 3, 10, 10)
# 自适应平均池化,输出尺寸为 (5,5)
adaptive_avg_pool = nn.AdaptiveAvgPool2d((5, 5))
output = adaptive_avg_pool(input)
print(output.shape) # 输出: torch.Size([1, 3, 5, 5])
自适应池化常用于全连接卷积网络(FCN)或全局池化操作中,以确保模型对不同输入尺寸具有一定的鲁棒性。
优点:无需关心输入图像大小,自适应池化会根据指定输出大小自动调整步长.
参考资料:深度之眼课程

1202

被折叠的 条评论
为什么被折叠?



