复变函数、第二章

一、复变函数的极限
Def.1.函数 w = f ( z ) w=f(z) w=f(z)是复平面上区域D内有定义的单值函数,并且 z 0 ∈ D z_0∈D z0D.如果 lim ⁡ z → z 0 f ( z ) − f ( z 0 ) z − z 0 \color{red}\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0} zz0limzz0f(z)f(z0)存在,则称 f ( z ) f(z) f(z)在点 z 0 z_0 z0可导,这个极限称为 f ( z ) f(z) f(z)在点 z 0 z_0 z0的导数,记作 f ′ ( z 0 ) f^{'}(z_0) f(z0)
f ( z ) f(z) f(z) z = z 0 z=z_0 z=z0可导, f ( z 0 + Δ z ) − f ( z 0 ) = f ′ ( z 0 ) + ρ ( Δ z ) Δ z f(z_0+Δz)-f(z_0)=f^{'}(z_0)+ρ(Δz)Δz f(z0+Δz)f(z0)=f(z0)+ρ(Δz)Δz其中 lim ⁡ z → 0 ρ ( Δ z ) = 0 \color{red}\lim_{z\to 0}{ρ(Δz)}=0 z0limρ(Δz)=0

2.设函数 w = f ( z ) w=f(z) w=f(z) z = z 0 z=z_0 z=z0可导,则称 f ′ ( z 0 ) Δ z ( Δ z ≠ 0 ) f^{'}(z_0)Δz(Δz≠0) f(z0)Δz(Δz=0)为函数 w = f ( z ) w=f(z) w=f(z) z 0 z_0 z0点的微分,记作 d w = f ′ ( z 0 ) Δ z dw=f^{'}(z_0)Δz dw=f(z0)Δz,也称函数 w = f ( z ) w=f(z) w=f(z)在点 z 0 z_0 z0可微。

3.复函数的求导法则
[ f ( z ) ± g ( z ) ] ′ = f ′ ( z ) ± g ′ ( z ) \color{red}[f(z)±g(z)]^{'} = f^{'}(z)± g^{'}(z) [f(z)±g(z)]=f(z)±g(z)
[ f ( z ) g ( z ) ] ′ = f ′ ( z ) g ( z ) + f ( z ) g ′ ( z ) \color{red}[f(z)g(z)]^{'} = f^{'}(z) g^(z)+f^(z) g^{'}(z) [f(z)g(z)]=f(z)g(z)+f(z)g(z)
[ f ( z ) g ( z ) ] ′ = f ( z ) ′ g ( z ) ′ , g ( z ) ≠ 0 \color{red}[\frac{f(z)}{g(z)}]^{'}=\frac{f(z)^{'}}{g(z)^{'}},g(z)≠0 [g(z)f(z)]=g(z)f(z)g(z)=0

Def.2.如果 f ( z ) f(z) f(z)在点 z 0 z_0 z0的某邻域内可导,那么称 f ( z ) f(z) f(z)在点 z 0 z_0 z0解析。
f ( z ) f(z) f(z)在点 z 0 z_0 z0的某邻域内可导。    ⟺    f ( z ) \iff f(z) f(z) z 0 z_0 z0处解析    ⟹    \implies f ( z ) f(z) f(z) z 0 z_0 z0处可导
如果 f ( z ) f(z) f(z)在点 z 0 z_0 z0不解析,那么称 z 0 z_0 z0点为奇点。

Def.3.如果 f ( z ) f(z) f(z)在区域D内每一点都解析,那么称 f ( z ) f(z) f(z)在区域D内解析,或称 f ( z ) f(z) f(z)是D内的一个解析函数。

Def.4.函数在闭区域G内解析,而闭区域D上每一点都属于G,则 f ( z ) f(z) f(z)在D上解析。

柯西-黎曼条件
定理1.设函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y)在区域D内有定义,那么 f ( z ) f(z) f(z)在点 z = x + i y z=x+iy z=x+iy可微的充分必要条件是在点(x,y),u(x,y)及v(x,y)可微,并且 α u α x = α v α y , α u α y = − α v α x \color{red}\frac{\alpha u}{\alpha x}=\frac{\alpha v}{\alpha y},\frac{\alpha u}{\alpha y}=-\frac{\alpha v}{\alpha x} αxαu=αyαv,αyαu=αxαv

定理2.设函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y)在区域D内有定义,那么 f ( z ) f(z) f(z)在区域D内解析的充分必要条件是 u ( x , y ) u(x,y) u(x,y) v ( x , y ) v(x,y) v(x,y)在D内可微,并且在D内有
α u α x = α v α y , α u α y = − α v α x \color{red}\frac{\alpha u}{\alpha x}=\frac{\alpha v}{\alpha y},\frac{\alpha u}{\alpha y}=-\frac{\alpha v}{\alpha x} αxαu=αyαv,αyαu=αxαv

二、初等函数
1.指数函数
指数函数的定义:
复变函数的指数函数满足下列条件:
1). f ( z ) f(z) f(z)在复平面内解析;
2). f ′ ( z ) = f ( z ) , z ∈ C f^{'}(z)=f(z),z\in C f(z)=f(z),zC;
3).当 I m ( z ) = 0 Im(z)=0 Im(z)=0时, f ( z ) = e x f(z)=e^x f(z)=ex,其中 x = R e ( z ) x=Re(z) x=Re(z),可见 f ( z ) = e x ( c o s y + i s i n y ) f(z)=e^x(cosy+isiny) f(z)=ex(cosy+isiny)
定义1.如果 z = x + i y z=x+iy z=x+iy,那么称函数 f ( z ) = e x ( c o s y + i s i n y ) f(z)=e^x(cosy+isiny) f(z)=ex(cosy+isiny)为复变函数 z z z的指数函数,记作 e x p z = e x ( c o s y + i s i n y ) expz=e^x(cosy+isiny) expz=ex(cosy+isiny) ∣ e x p z ∣ = e x |expz|=e^x expz=ex A r g ( e x p z ) = y + 2 k π Arg(expz)=y+2kπ Arg(expz)=y+2kπ
注 : \color{red}注: 复变函数 z z z的指数函数 e x p z expz expz往往用 e z e^z ez代替,在这里 e z e^z ez没有意义,仅仅作为代替 e x p z expz expz的符号使用。 特 别 的 , 当 z = i y 时 , e y = c o s y + i s i n y \color{red}特别的,当z=iy时,e^y=cosy+isiny z=iyey=cosy+isiny

2.复指数的性质
(1) ∀ z ∈ C ; e z ≠ 0 \forall z\in C;e^z\neq0 zC;ez=0
(2) e z e^z ez在C上解析且在C上有 d e z d z = e z \frac{de^z}{dz}=e^z dzdez=ez
(3) ∀ z 1 , z 2 ∈ C , e z 1 + z 2 = e z 1 \forall z_1,z_2\in C,e^{z_1+z_2}=e^{z_1} z1,z2C,ez1+z2=ez1
(4) e z e^z ez 2 k π i 2k\pi i 2kπi为一个周期的函数, k k k为任意整数。

三、对数函数
定义2.如果 z ≠ 0 z \neq0 z=0,那么称满足方程 e w = z e^w=z ew=z的函数 w = f ( z ) w=f(z) w=f(z)为复变函数 z z z的对数函数,记作 w = L n z w=Lnz w=Lnz
w = u + i v w=u+iv w=u+iv,则有 z = e u + i v = e u e i v z=e^{u+iv}=e^ue^{iv} z=eu+iv=eueiv,于是 e u = ∣ z ∣ e^u=|z| eu=z v = A r g z v=Argz v=Argz,从而 w = l n ∣ z ∣ + i A r g z w=ln|z|+iArgz w=lnz+iArgz
注 : \color{red}注:
由于 A r g z Argz Argz是多值函数,所以对数函数 w = L n z w=Lnz w=Lnz为多值函数,并且每两个值相差 2 π i 2\pi i 2πi的整数倍。

定义3.如果 z = 0 z=0 z=0,那么称单值函数 l n z = l n ∣ z ∣ + i a r g z lnz=ln|z|+iargz lnz=lnz+iargz为对数函数 L n z Lnz Lnz的主值,记作 l n z = l n ∣ z ∣ + i a r g z lnz=ln|z|+iargz lnz=lnz+iargz
注 : \color{red}注:
(1).在实变函数中,负数没有对数,但这个事实在复变范围不在成立。
(2).对数函数的连续性
在除原点及其负实轴的平面内连续
(2).对数函数的性质
L n ( z 1 z 2 ) = L n z 1 + L n z 2 Ln(z_1z_2)=Lnz_1+Lnz_2 Ln(z1z2)=Lnz1+Lnz2
L n z 1 z 2 = L n z 1 − L n z 2 Ln\frac{z_1}{z_2}=Lnz_1-Lnz_2 Lnz2z1=Lnz1Lnz2
L n z n = n L n z 不 在 成 立 。 \color{red}Lnz^n=nLnz不在成立。 Lnzn=nLnz
对数函数的连续性:
在除去原点及负实轴的平面内连续。
四、幂函数
1.如果a为不等于零的复数,b为任意一个复数,规定乘幂, a b = e b L n a = e b l n a e 2 b k π i a^b=e^{bLna}=e^{blna}e^{2bk\pi i} ab=ebLna=eblnae2bkπi
当b为任意整数时, a b a^b ab为单值,当 b = p q 时 , a b b=\frac{p}{q}时,a^b b=qpab具有多值。
2.幂函数的定义,形如 z b = e b L n z ( z ≠ 0 , b 为 任 意 复 常 数 ) z^b=e^{bLnz}(z\neq 0,b为任意复常数) zb=ebLnz(z=0,b)的函数称为幂函数。
3.幂函数的连续性与解析性
幂函数是由 e w e^w ew w = b L n z w=bLnz w=bLnz复合而成,在除去原点和负实轴上解析。

五、三角函数
1.由 e i θ = c o s θ + i s i n θ e^{i\theta}=cos\theta+isin\theta eiθ=cosθ+isinθ e − i θ = c o s θ − i s i n θ e^{-i\theta}=cos\theta-isin\theta eiθ=cosθisinθ,得到 c o s θ = e i θ + e − i θ 2 cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2} cosθ=2eiθ+eiθ
s i n θ = e i θ − e − i θ 2 i sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i} sinθ=2ieiθeiθ
2.定义对任何复数z
c o s z = e i z + e − i z 2 cosz=\frac{e^{iz}+e^{-iz}}{2} cosz=2eiz+eiz
s i n z = e i z − e − i z 2 i sinz=\frac{e^{iz}-e^{-iz}}{2i} sinz=2ieizeiz
3.对任意复数z,欧拉公式任然成立。
4.性质
(1) c o s z cosz cosz s i n z sinz sinz是以 2 π 2\pi 2π为周期的周期函数。
(2) c o s ( − z ) = c o s z cos(-z)=cosz cos(z)=cosz s i n ( − z ) = − s i n z sin(-z)=-sinz sin(z)=sinz
(3)求导: ( c o s z ) ′ = − s i n z (cosz)'=-sinz (cosz)=sinz ( s i n z ) ′ = ( c o s z ) (sinz)'=(cosz) (sinz)=(cosz)
(4) s i n 2 z + c o s 2 z = 1 sin^2z+cos^2z=1 sin2z+cos2z=1
(5) c o s ( z 1 + z 2 ) = c o s z 1 c o s z 2 − s i n z 1 s i n z 2 cos(z_1+ z_2)=cosz_1cosz_2-sinz_1sinz_2 cos(z1+z2)=cosz1cosz2sinz1sinz2
s i n ( z 1 ± z 2 ) = s i n z 1 c o s z 2 ± c o s z 1 s i n z 2 sin(z_1\pm z_2)=sinz_1cosz_2\pm cosz_1sinz_2 sin(z1±z2)=sinz1cosz2±cosz1sinz2

六、反三角函数
1.定义,设 z = s i n w z=sinw z=sinw,称 w w w z z z的反正弦函数,记作
w = A r c s i n z = − i L n ( i z + 1 − z 2 ) w=Arcsinz=-iLn(iz+\sqrt{1-z^2}) w=Arcsinz=iLn(iz+1z2 )
w = A r c c o s z = − i L n ( z + z 2 − 1 ) w=Arccosz=-iLn(z+\sqrt{z^2-1}) w=Arccosz=iLn(z+z21 )

七、调和函数
1.设二元时变函数 u ( x , y ) u(x,y) u(x,y)在区域 D D D内有连续的二阶偏导数,并且满足拉普拉斯方程: α 2 u α x 2 + α 2 u α y 2 = 0 \frac{\alpha^2u}{\alpha x^2}+\frac{\alpha^2u}{\alpha y^2}=0 αx2α2u+αy2α2u=0,则称 u ( x , y ) u(x,y) u(x,y)为D内的调和函数。
2.若函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y)在区域D内解析,则函数 u ( x , y ) u(x,y) u(x,y) v ( x , y ) v(x,y) v(x,y)都是 D D D内的调和函数。
3.如果两个调和函数 u ( x , y ) u(x,y) u(x,y) v ( x , y ) v(x,y) v(x,y)使得 u ( x , y ) + i v ( x , y ) u(x,y)+iv(x,y) u(x,y)+iv(x,y)是解析的,则 u ( x , y ) u(x,y) u(x,y)称为 v ( x , y ) v(x,y) v(x,y)的共轭调和函数。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值