一、正弦电路的分析
标准直流:大小和方向均不随时间改变的恒定信号
交流:大小和方向都随时间做周期性变化的信号
二、正弦信号的三要素
随时间按正弦规律变动的电流称为正弦电流。
i
=
I
m
c
o
s
(
w
t
+
ψ
i
)
i=I_mcos(wt+\psi_i)
i=Imcos(wt+ψi)
I
m
I_m
Im:振幅或幅值
ψ
i
\psi_i
ψi:初项,一般
∣
ψ
i
∣
<
π
|\psi_i|<\pi
∣ψi∣<π,与计时起点有关
w
w
w:角频率,
w
=
2
π
T
=
2
π
f
w=\frac{2\pi}{T}=2\pi f
w=T2π=2πf
即,幅值,初项,角频率称为正弦信号的三要素。
三、我国标准频率为50Hz,称为工频,
w
=
100
π
r
a
d
/
s
w=100\pi rad/s
w=100πrad/s。
电网频率:美国和台湾为60Hz
人耳可以听见的声音频率约在 20 ~ 20000 Hz
移动通信频率:900MHz~1800 MHz
无线通信频率: 高达 300GHz
四、正弦电路常见概念
1、参考正弦量:图示电压
u
u
u通过最大值的瞬间作为时间坐标原点(t=0),此时
ψ
u
=
0
\psi_u=0
ψu=0,正弦电压为
u
=
U
m
c
o
s
w
t
u=U_mcoswt
u=Umcoswt,
i
=
I
m
c
o
s
(
w
t
+
ψ
i
)
i=I_mcos(wt+\psi_i)
i=Imcos(wt+ψi)
2、有效值:与交流热效应相等的直流量定义为交流电 的有效值,是瞬时值在一个周期内方均根值
I
=
1
T
∫
0
T
i
2
d
t
=
I
m
2
I=\sqrt{\frac{1}{T}\int_0^Ti^2dt}=\frac{I_m}{\sqrt{2}}
I=T1∫0Ti2dt=2Im
注意:
交流电压、电流表测量数据为有效值;
交流设备名牌标注的电压、电流均为有效值。
3、相位差:同频率正弦电压
u
=
U
m
c
o
s
(
w
t
+
ψ
u
)
u=U_mcos(wt+\psi_u)
u=Umcos(wt+ψu)和正选电流
i
=
I
m
c
o
s
(
w
t
+
ψ
i
)
i=I_mcos(wt+\psi_i)
i=Imcos(wt+ψi)的相位差,
ϕ
=
ψ
u
−
ψ
i
\phi=\psi_u-\psi_i
ϕ=ψu−ψi
注意:
~两同频率的正弦量之间相位差为常数,与计时起点无关。
~不同频率的正弦量比较无意义。
五、复数表示法
1、设A是一个复数,可表示为 直角坐标式
A
=
a
+
j
b
A=a+jb
A=a+jb
极坐标式:
A
=
∣
A
∣
e
j
θ
A=|A|e^{j\theta}
A=∣A∣ejθ,简写:
A
=
∣
A
∣
∠
θ
A=|A|\angle\theta
A=∣A∣∠θ
a
=
∣
A
∣
c
o
s
θ
,
b
=
∣
A
∣
s
i
n
θ
,
θ
=
a
r
c
t
a
n
b
a
a=|A|cos\theta,b=|A|sin\theta,\theta =arctan\frac{b}{a}
a=∣A∣cosθ,b=∣A∣sinθ,θ=arctanab
正弦量的相量表示:
f
(
t
)
=
A
m
c
o
s
(
w
t
+
ψ
)
f(t)=A_mcos(wt+\psi)
f(t)=Amcos(wt+ψ)
由欧拉公式得:
A
m
ˊ
=
A
m
e
j
ψ
=
A
m
∠
ψ
\acute{A_m}=A_me^{j\psi}=A_m\angle{\psi}
Amˊ=Amejψ=Am∠ψ
注:
~相量只是表示正弦量,而不等于正弦量
~只有正弦量才能用相量表示,非正弦量不能
~只有同频率的正弦量才能画在同一相量图上
~相量的两种表示形式 ,直坐标,极坐标
六、相量运算规则
1、唯一性:两个同频率正弦量相等的充要条件是代表这两个正弦量的相量 相等。即对于所有的时间 t ,
R
e
[
A
ˊ
1
m
e
j
w
t
]
=
R
e
[
A
ˊ
2
m
e
j
w
t
]
Re[\acute{A}_{1m}e^{jwt}]=Re[\acute{A}_{2m}e^{jwt}]
Re[Aˊ1mejwt]=Re[Aˊ2mejwt]充要条件
A
ˊ
1
m
=
A
ˊ
2
m
\acute{A}_{1m}=\acute{A}_{2m}
Aˊ1m=Aˊ2m
2、线性性质:N个同频率正弦量线性组合(具有实系数)的相量等于各个 正弦量相量的同样的线性组合。设
f
k
(
t
)
=
R
e
[
A
ˊ
m
k
e
j
w
t
]
f_k(t)=Re[\acute{A}_{mk}e^{jwt}]
fk(t)=Re[Aˊmkejwt]则
∑
k
=
1
N
b
k
∗
f
k
(
t
)
⇔
∑
k
=
1
N
b
k
∗
A
ˊ
m
k
\sum_{k=1}^Nb_k*f_k(t)\Leftrightarrow \sum_{k=1}^Nb_k*\acute{A}_{mk}
k=1∑Nbk∗fk(t)⇔k=1∑Nbk∗Aˊmk
3、微分规则:正弦量(角频率为ω) 时间导数的相量等于表示原正弦量的相 量乘以因子
j
ω
jω
jω
即:
d
d
t
f
(
t
)
⇔
j
w
A
ˊ
m
\frac{d}{dt}f(t)\Leftrightarrow jw\acute{A}_{m}
dtdf(t)⇔jwAˊm
4、积分规则:正弦量(角频率为ω) 时间积分的相量等于表示原正弦量的相 量除以因子
j
ω
jω
jω。
七、 基尔霍夫定律相量形式
八、RLC 各元件伏安特性相量形式
九、阻抗和导纳
导纳
十、正弦交流含独立源一端口网络如图 (a)所示
第六章、正弦稳态电路分析
最新推荐文章于 2023-04-01 23:33:15 发布