第六章、正弦稳态电路分析

一、正弦电路的分析
标准直流:大小和方向均不随时间改变的恒定信号
交流:大小和方向都随时间做周期性变化的信号
二、正弦信号的三要素
随时间按正弦规律变动的电流称为正弦电流。
i = I m c o s ( w t + ψ i ) i=I_mcos(wt+\psi_i) i=Imcos(wt+ψi)
在这里插入图片描述
I m I_m Im:振幅或幅值
ψ i \psi_i ψi:初项,一般 ∣ ψ i ∣ < π |\psi_i|<\pi ψi<π,与计时起点有关
w w w:角频率, w = 2 π T = 2 π f w=\frac{2\pi}{T}=2\pi f w=T2π=2πf
即,幅值,初项,角频率称为正弦信号的三要素。
三、我国标准频率为50Hz,称为工频, w = 100 π r a d / s w=100\pi rad/s w=100πrad/s
电网频率:美国和台湾为60Hz
人耳可以听见的声音频率约在 20 ~ 20000 Hz
移动通信频率:900MHz~1800 MHz
无线通信频率: 高达 300GHz
四、正弦电路常见概念
1、参考正弦量:图示电压 u u u通过最大值的瞬间作为时间坐标原点(t=0),此时 ψ u = 0 \psi_u=0 ψu=0,正弦电压为 u = U m c o s w t u=U_mcoswt u=Umcoswt i = I m c o s ( w t + ψ i ) i=I_mcos(wt+\psi_i) i=Imcos(wt+ψi)
在这里插入图片描述
2、有效值:与交流热效应相等的直流量定义为交流电 的有效值,是瞬时值在一个周期内方均根值 I = 1 T ∫ 0 T i 2 d t = I m 2 I=\sqrt{\frac{1}{T}\int_0^Ti^2dt}=\frac{I_m}{\sqrt{2}} I=T10Ti2dt =2 Im
注意:
交流电压、电流表测量数据为有效值;
交流设备名牌标注的电压、电流均为有效值。

3、相位差:同频率正弦电压 u = U m c o s ( w t + ψ u ) u=U_mcos(wt+\psi_u) u=Umcos(wt+ψu)和正选电流 i = I m c o s ( w t + ψ i ) i=I_mcos(wt+\psi_i) i=Imcos(wt+ψi)的相位差, ϕ = ψ u − ψ i \phi=\psi_u-\psi_i ϕ=ψuψi
注意:
~两同频率的正弦量之间相位差为常数,与计时起点无关。
~不同频率的正弦量比较无意义。
在这里插入图片描述
在这里插入图片描述
五、复数表示法
1、设A是一个复数,可表示为 直角坐标式 A = a + j b A=a+jb A=a+jb
极坐标式: A = ∣ A ∣ e j θ A=|A|e^{j\theta} A=Aejθ,简写: A = ∣ A ∣ ∠ θ A=|A|\angle\theta A=Aθ
a = ∣ A ∣ c o s θ , b = ∣ A ∣ s i n θ , θ = a r c t a n b a a=|A|cos\theta,b=|A|sin\theta,\theta =arctan\frac{b}{a} a=Acosθb=Asinθ,θ=arctanab
在这里插入图片描述
在这里插入图片描述
正弦量的相量表示: f ( t ) = A m c o s ( w t + ψ ) f(t)=A_mcos(wt+\psi) f(t)=Amcos(wt+ψ)
由欧拉公式得: A m ˊ = A m e j ψ = A m ∠ ψ \acute{A_m}=A_me^{j\psi}=A_m\angle{\psi} Amˊ=Amejψ=Amψ
在这里插入图片描述
注:
~相量只是表示正弦量,而不等于正弦量
~只有正弦量才能用相量表示,非正弦量不能
~只有同频率的正弦量才能画在同一相量图上
~相量的两种表示形式 ,直坐标,极坐标

在这里插入图片描述
在这里插入图片描述
六、相量运算规则
1、唯一性:两个同频率正弦量相等的充要条件是代表这两个正弦量的相量 相等。即对于所有的时间 t , R e [ A ˊ 1 m e j w t ] = R e [ A ˊ 2 m e j w t ] Re[\acute{A}_{1m}e^{jwt}]=Re[\acute{A}_{2m}e^{jwt}] Re[Aˊ1mejwt]=Re[Aˊ2mejwt]充要条件 A ˊ 1 m = A ˊ 2 m \acute{A}_{1m}=\acute{A}_{2m} Aˊ1m=Aˊ2m
2、线性性质:N个同频率正弦量线性组合(具有实系数)的相量等于各个 正弦量相量的同样的线性组合。设 f k ( t ) = R e [ A ˊ m k e j w t ] f_k(t)=Re[\acute{A}_{mk}e^{jwt}] fk(t)=Re[Aˊmkejwt] ∑ k = 1 N b k ∗ f k ( t ) ⇔ ∑ k = 1 N b k ∗ A ˊ m k \sum_{k=1}^Nb_k*f_k(t)\Leftrightarrow \sum_{k=1}^Nb_k*\acute{A}_{mk} k=1Nbkfk(t)k=1NbkAˊmk
3、微分规则:正弦量(角频率为ω) 时间导数的相量等于表示原正弦量的相 量乘以因子 j ω jω jω
即: d d t f ( t ) ⇔ j w A ˊ m \frac{d}{dt}f(t)\Leftrightarrow jw\acute{A}_{m} dtdf(t)jwAˊm
4、积分规则:正弦量(角频率为ω) 时间积分的相量等于表示原正弦量的相 量除以因子 j ω jω jω
在这里插入图片描述
七、 基尔霍夫定律相量形式
在这里插入图片描述
在这里插入图片描述
八、RLC 各元件伏安特性相量形式
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
九、阻抗和导纳
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
导纳
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
十、正弦交流含独立源一端口网络如图 (a)所示
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值