2025 年,大模型会有哪些新变化?

c4c4d7a2e24da74165af3365b037eb0e.gif

作者 | 唐小引

出品 | CSDN(ID:CSDNnews)

人间一年,大模型三年。

2024 年春节尚未结束之时,Sora 横空出世,由此拉开了大模型多模态大战的序幕。

大模型的幻觉问题,从苦寻消除良方变成了接纳,RAG 技术由此风靡,将传统的生成式大模型与实时信息检索技术相结合成为了王道,所有大模型研发必有 RAG。

与之相对应的是摒弃预训练、微调之风渐起,OpenAI 前首席科学家 Ilya Sutskever 直言“预训练即将终结(Pre-training as we know it will end)”。

开源 vs 闭源之争不绝于耳,和以往传统开源不同,依赖于代码、数据集、训练的大模型什么时候能够 360° 完全透明地开源成为了开发者们渴求的开源姿势。

2024 年,我们呼唤着大模型杀手级应用的到来,但依然未能如愿。GenAI 应用爆发何时到来、生成式 AI 应用究竟该怎么做?困惑良多。

值此年关交替之际,CSDN 全新对话直播栏目《万有引力》特别组织「年终盘点」系列直播,抽丝剥茧,解读技术真相。首期直播将于 1 月 8 日(星期三)晚上 19:30-21:00 正式开播,欢迎朋友们点击下方视频号按钮预约。

直播看点:

  • AI 落地元年算实现吗?Killer App 在哪里?

  • 今年引发关注与争议的问题讨论:Scaling Law 撞墙、预训练终结、数据。

  • 核心技术转进展:多模态、推理突破,而备受关注的:RAG 是通往未来 AGI 的唯一之路吗?

  • 开源大模型之路

  • AI 技术的全球、国内战场观察

  • 2025 年、未来几年的预测

大模型时代,讲究一人团队,为此我特别尝试了, 作为一名设计小白,用即梦 AI 生成了一张海报,供大家闲暇一观。

f2f7be2905b91208ebc06abd9be5df03.jpeg

2025 年,大模型会有哪些新变化?回首 2024,展望 2025,我们特别邀请到了三位嘉宾:

林咏华,现任北京智源人工智能研究院副院长兼总工程师,主管大模型研究中心、人工智能系统及基础软件研究、产业生态合作等重要方向。是国内开源大模型的代表人物。

黄东旭,PingCAP 联合创始人兼 CTO,资深基础软件工程师,非典型程序员,过去一年基本在海外满世界跑,将 AI 与数据深度结合,这次会带来他站在国际视角的 AI 观察与思考。

李建忠,CSDN 高级副总裁、Boolan 首席技术专家,对人工智能、产品创新、软件架构等有丰富经验和深入研究。近年来研究以⼤语⾔模型为主的⼈⼯智能⽅法,相关研究和咨询引起业界强烈关注。

1 月 8 日(星期三)晚 19:30-21:00,CSDN 视频号直播间,欢迎一起相约,带着对大模型的困惑与疑问,一起深度交流。

### 2025大模型的特色功能 #### 大规模数据处理能力 到2025大模型已经具备强大的大规模数据处理能力。这些模型能够高效地分析和理解来自不同领域的大规模结构化与非结构化数据,从而支持更广泛的应用场景[^1]。 #### 行业定制化解决方案 随着技术的发展,大模型不再局限于通用任务,而是深入各个垂直行业提供定制化的解决方案。例如,在医疗领域,基于星火大模型或文心一言等成熟的框架可以快速构建针对特定疾病的诊断辅助工具,提升医疗服务效率。 #### 平台级服务能力 第七阶段标志着以大模型平台应用与开发为核心的时代到来。各大厂商推出的大模型服务平台不仅提供了便捷易用的接口供开发者调用预训练好的模型完成具体业务需求;还允许企业根据自身特点调整参数甚至重训练专属版本来满足独特的要求。 ```python # 示例代码展示如何通过API调用某一大型语言模型服务进行文本生成 import requests def generate_text(prompt, api_key): url = "https://api.example.com/v1/models/generate" headers = {"Authorization": f"Bearer {api_key}"} payload = { 'prompt': prompt, 'max_tokens': 50 } response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: return response.json()['text'] else: raise Exception(f"Request failed with status code {response.status_code}") # 使用函数生成一段关于未来科技的文章开头部分 try: article_start = generate_text("未来的科技创将会改变我们的生活", "<your_api_key>") print(article_start) except Exception as e: print(e) ``` #### 高效的学习机制 为了适应不断变化的实际应用场景以及降低维护成本,一代大模型采用了更加高效的增量学习方法论。这意味着当有知识加入时无需从头开始整个过程就能让系统迅速掌握增加的信息并作出相应改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值