机器人技术
机器人,可以代替人类努力的任何自动操作的机器,尽管它在外观上可能不像人类,也不可能以人性化的方式执行功能。通过扩展,机器人技术是处理机器人的设计,构造和操作的工程学科。
人工人类的概念早于已记录的历史(请参阅 自动机),但现代术语“机器人”源自捷克语“ robota”(“强迫劳动”或“农奴”),该词用于卡雷尔·切佩克(KarelČapek)的戏剧RUR(1920)。该剧的机器人是人工制造的,被工厂主无情地利用,直到他们起义并最终摧毁了人类。它们是生物学的,例如玛丽·雪莱( Mary Shelley)的《科学怪人》( Frankenstein)(1818)中的怪物,还是机械的,都没有具体说明,但是机械的替代方法启发了一代又一代的发明者来构建电子人形生物。
机器人学这个词最早出现在艾萨克·阿西莫夫(Isaac Asimov)的科幻故事逃避(1942)。伴随着阿西莫夫(Asimov)以后的机器人故事,它为开发智能机器人可能遇到的困难以及可能导致的技术和社会问题设定了新的合理性标准。逃避还包含了阿西莫夫著名的机器人三定律:
-
2.机器人必须服从人类的命令,除非这些命令会与第一定律相抵触。
-
3.机器人必须保护自己的存在,只要这种保护与第一或第二定律不冲突。
本文跟踪机器人和机器人技术的发展。有关工业应用的更多信息,请参见自动化文章。
工业机器人
尽管不是形式上的类人动物,但具有灵活的行为和一些类人的物理属性的机器已经为工业开发。第一个固定式工业机器人是可编程的Unimate,一种电子控制的液压重型起重臂,可以重复任意运动序列。它由美国工程师George Devol于1954年发明,并由Unimation Inc.是由美国工程师Joseph Engelberger于1956年成立的公司。1959年,Unimate的原型被引入通用汽车公司 压铸工厂特伦顿,新泽西州。1961年,Condec Corp.(在前一年收购Unimation之后)向GM工厂交付了世界上第一台生产线机器人。对于人类而言,它的艰巨任务是从压铸机中取出和堆叠铁水零件。Unimate武器继续由世界各地的被许可人开发和销售,而汽车工业仍然是最大的买家。
1960年代末期和1970年代末期,麻省理工学院(MIT)和斯坦福大学开发出了由传感器引导的更先进的计算机控制电动臂,它们与相机一起用于机器人手眼研究。斯坦福大学的Victor Scheinman与Unimation共同为通用汽车设计了首款用于工业的此类手臂。称为PUMA(可编程通用组装机)自1978年以来一直用于组装汽车子部件,例如仪表板和照明灯。PUMA被广泛模仿,其后代(无论大小)仍用于电子和其他行业的轻型装配。自1990年代以来,小型电动臂已在分子生物学实验室中变得很重要,它可以精确地处理试管阵列并吸取复杂的试剂序列。
移动工业机器人也于1954年首次出现。同年,巴雷特电子公司(Barrett Electronics Corporation)生产的无人驾驶电动手推车开始在南卡罗来纳州的一家杂货店附近搬运货物。这样的机器,被称为AGV(自动导引车)通常通过沿着固定在混凝土地板中的信号发射线进行导航。在1980年代,AGV收购了微处理器控制器,该控制器比简单的电子控制所具有的行为更为复杂。在1990年代,一种新的导航方法开始在仓库中使用:装有扫描激光的AGV通过测量固定后向反射器的反射(在任何位置都必须可见至少三个)来对它们的位置进行三角测量。
尽管工业机器人最早出现在美国,但生意并没有在美国蓬勃发展。Unimation于1983年被西屋电气公司(Westinghouse Electric Corporation)收购,并于几年后关闭。美国另一家主要的液压臂制造商,辛辛那提·米拉克龙公司(Cincinnati Milacron,Inc.)于1990年将其机器人部门出售给了瑞典的Asea Brown Boveri有限公司。仅存的美国公司。Unimation的外国被许可人,特别是在日本和瑞典继续经营,在1980年代,日本和欧洲的其他公司开始大力进入这一领域。人口老龄化和随之而来的工人短缺的前景促使日本制造商甚至在回报明显之前就开始尝试先进的自动化技术,从而为机器人制造商打开了市场。到1980年代后期,在Fanuc Ltd.的机器人部门,日本的Matsushita Electric Industrial Company,Ltd.,三菱集团和Honda Motor Company,Ltd.的领导下,日本已成为制造和使用工业机器人的全球领导者。欧洲的高人工成本同样鼓励采用机器人替代品,因为在欧盟安装了工业机器人 在2001年首次超过日本的安装量。
机器人 玩具
缺乏可靠的功能限制了工业和服务机器人(为在办公室和家庭环境中工作而设计)的市场。另一方面,玩具机器人可以娱乐而无需非常可靠地执行任务,并且机械种类已经存在了数千年。(请参阅 自动机。)在1980年代,出现了微处理器控制的玩具,它们可以响应声音或光线而说话或移动。在1990年代更高级的人认识到声音和言语。索尼公司(Sony Corporation)在1999年推出了一种狗形机器人,名为AIBO带有两个可以激活其腿部,头部和尾部的电机,两个麦克风和一台彩色摄像头,所有这些都由功能强大的微处理器进行协调。AIBO比以往任何时候都更加栩栩如生,追逐彩球并学会了认出主人,并进行探索和适应。尽管第一批AIBO的价格为2500美元,但最初的5000台AIBO立即在互联网上售罄。
机器人研究
-
了解可形成自身,执行各种任务,然后因退化而消失的折纸机器人由可打印材料制成的多层纸张在加热时会折叠起来,变成一个可以遥控的微型“折纸机器人”。©麻省理工学院(大不列颠出版合作伙伴)查看本文的所有视频
-
灵巧机械手工业和工业视觉有先进基层机器人工作进行自1960年代后期以来的人工智能(AI)实验室。然而,这些成就远不止于AI本身,还远未达到具有广泛人类能力的机器的积极愿景。识别和操纵对象,可靠地导航空间和计划动作的技术在某些狭窄且受约束的环境中有效,但在更一般的情况下却失败了。
最早的机器人视觉计划始于1970年代初,它使用统计公式来检测机器人摄像机图像中的线性边界,并通过巧妙的几何推理将这些线链接到可能物体的边界中,从而提供了其世界的内部模型。其他几何公式将对象位置与允许机械臂抓住它们所需的必要关节角度相关,或者与使移动机器人围绕(或到达)对象的转向和驱动运动相关。这种方法很繁琐,当计划外的图像复杂性误导了第一步时经常失败。1970年代后期,通过添加用于可视化分析的专家系统组件来克服这些局限性的尝试,主要是使程序更加笨拙-将复杂的新问题替换为更简单的故障。
在1980年代中期 麻省理工学院AI实验室的罗德尼·布鲁克斯(Rodney Brooks)利用这一僵局发起了一场引人注目的新机芯,该机芯拒绝了让机器为周围环境创建内部模型的工作。相反,布鲁克斯和他的追随者使用简单的子程序编写了计算机程序,这些子程序将传感器输入连接到电机输出,每个子程序对行为进行编码,例如避免感觉到障碍物或朝着检测到的目标前进。有证据表明,许多昆虫以及较大的神经系统的某些部分都主要通过这种方式起作用。这种方法产生了一些非常吸引人的像昆虫的机器人,但与真正的昆虫一样,它们的行为也不稳定,因为它们的传感器被瞬间误导了,这种方法被证明不适用于大型机器人。另外,这种方法没有提供直接的机制 用于指定长而复杂的动作序列-工业机器人操纵器的存在理由以及未来家用机器人的存在理由(但是,请注意,iRobot Corporation在2004年销售了超过100万个具有简单昆虫样行为的机器人吸尘器,这是第一个用于服务机器人)。

同时,其他研究人员继续追求各种技术,以使机器人能够感知周围环境并跟踪自己的运动。一个突出的例子是半自主的移动机器人,用于火星表面的探索。由于信号的传输时间较长,因此这些“漫游者”必须能够在距地球的干预之间协商较短的距离。
对于完全一个特别有趣的实验场的自主移动机器人研究足球(足球)。1993年,一个国际研究人员社团组织了一个长期计划,以开发能够进行这项运动的机器人,并在每年的机器竞赛中测试其进度。首先机器人世界杯比赛是在1997年举行的名古屋,日本,在三个比赛组别进入团队:计算机模拟,小型机器人,和机器人中型。仅仅寻找和推动球是一项重大成就,但这项活动鼓励参与者分享研究成果,并在随后的几年中取得显着进步。1998年,Sony开始为研究人员提供可编程的AIBO,用于新的竞赛类别。这为团队提供了用于软件实验的标准可靠的预制硬件平台。
虽然机器人足球有助于协调和集中研究某些专业技能,但涉及更广泛能力的研究却是零散的。 传感器(声纳和激光测距仪,照相机和特殊光源)与算法结合使用,这些算法通过使用各种几何形状对图像或空间建模,并试图推断出机器人的位置,附近的位置和其他事物以及它们之间的差异任务可以完成。在1990年代开发的更快的微处理器已经启用了新的,广泛有效的技术。例如,通过统计地权衡大量传感器的测量值,计算机可以减轻由于反射,阻塞,不良照明或其他复杂情况而导致的读数混乱。另一种技术采用“自动”学习将传感器输入分类(例如,分类为对象或情况),或将传感器状态直接转换为所需的行为。包含数千个可调强度连接的连接主义神经网络是最著名的学习者,但是较小的,更专业的框架通常学习得更快,更好。在某些情况下,一个能够尽可能快地完成正确操作的程序还具有“调整旋钮”,可以对行为进行微调。另一种学习方式是记住大量的输入实例及其正确的响应,并在它们之间进行内插以处理新的输入。这样的技术已经广泛用于将语音转换为文本的计算机软件。
未来
许多公司都在研究消费者机器人,这些机器人可以在不经过专家定制安装的情况下导航周围的环境,识别常见的物体并执行简单的琐事。也许到2020年左右,这一过程将生产出第一批具有广泛能力的“通用机器人”,它们具有蜥蜴般的头脑,几乎可以为任何日常琐事编程。随着计算能力的预期提高,到2030年,具有可训练鼠标样思维的第二代机器人将成为可能。除了应用程序之外,这些机器人还可以托管一组软件“调节模块”,这些模块在预定的情况下生成正和负钢筋信号。
到2040年,计算能力将使具有猴子般思想的第三代机器人成为可能。这样的机器人将在模拟身体,文化和心理因素的模拟中从心理训练中学习。物理性质包括形状,重量,强度,质地和事物的外观以及如何处理它们的知识。文化方面将包括事物的名称,价值,适当的位置和目的。应用于人类和其他机器人的心理因素应包括目标,信念,感觉和喜好。该模拟将跟踪外部事件并对其模型进行调整,以使它们忠实于现实。这应该让机器人通过模仿来学习,并赋予它一种意识。到21世纪中叶,第四代机器人可能已经具有人类抽象的思维能力,能够抽象和概括。研究人员希望这样的机器能够将强大的推理程序与第三代机器相融合而产生。受过良好教育的第四代机器人很可能在智力上变得强大。
汉斯·彼得·莫拉维克(Hans Peter Moravec)