Transformer课程 第38章Transformer模型MPNet架构

本文深入探讨了Transformer模型的MPNet架构,包括MLM和PLM的数学原理,以及MPNet如何缓解position discrepancy问题。通过详细分析MPNet的各个组件如Tokenizer、Embeddings和Attention机制的源码,揭示了Transformer如何在Bayesian神经网络框架下处理数据不确定性,并介绍了围绕Transformer的NLP课程——NLP on Transformers 101。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第38章:融合MLM和PLM的Transformer模型MPNet架构内幕及完整源码实现
1,masked language modeling(MLM)数学原理和实现分析
2,permuted language modeling (PLM)数学原理和实现分析
3,为何MPNet为何能够缓解position discrepancy (vs. PLM in XLNet)?
4,BasicTokenizer源码完整实现分析
5,WordpieceTokenizer源码完整实现分析
6,MPNetTokenizer源码完整实现分析
7,MPNetEmbeddings源码完整实现分析
8,MPNetAttention源码完整实现分析
9,MPNetSelfAttention源码完整实现分析
10,MPNetPreTrainedModel源码完整实现分析
11,MPNetIntermediate源码完整实现分析
12,MPNetLayer源码完整实现分析
13,MPNetOutput源码完整实现分析
14,relative_position_bucket源码完整实现分析
15,MPNetEncoder源码完整实现分析
16,MPNetPooler源码完整实现分析
17,MPNetModel源码完整实现分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

段智华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值