第39章:面向Knowledge-intensive任务的Transformer模型RAG的架构内幕及完整源码实现
1,为何Transformer网络能够存储factual knowledge信息?
2,pretrained dense retrieval数学原理分析
3,sequence-to-sequence model数学原理分析
4,jointly fine-tuning数学原理分析
5,parametric memory原理分析
6,non-parametric memory原理分析
7,non-parametric memory on dense vector原理分析
8,使用pre-trained neural retriever背后的贝叶斯数学原理剖析
9,prepare_seq2seq_batch源码完整实现分析
10,RagTokenizer源码完整实现分析
11,RetrievAugLMMarginOutput源码完整实现分析
12,RetrievAugLMOutput源码完整实现分析
13,from_pretrained_question_encoder_generator源码完整实现分析
14,RagPreTrainedModel源码完整实现分析
15,RagModel源码完整实现分析
16,generat
Transformer课程 第39章Transformer模型RAG的架构
最新推荐文章于 2025-03-05 14:54:51 发布