Transformer课程 第39章Transformer模型RAG的架构

本文深入探讨Transformer模型RAG的架构,包括factual knowledge存储、dense retrieval和sequence-to-sequence模型的数学原理,以及源码实现分析。通过贝叶斯视角理解Transformer如何处理数据不确定性,并介绍围绕Transformer的NLP课程NLP on Transformers 101,涵盖Transformer系列的全生命周期知识点和实战项目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第39章:面向Knowledge-intensive任务的Transformer模型RAG的架构内幕及完整源码实现
1,为何Transformer网络能够存储factual knowledge信息?
2,pretrained dense retrieval数学原理分析
3,sequence-to-sequence model数学原理分析
4,jointly fine-tuning数学原理分析
5,parametric memory原理分析
6,non-parametric memory原理分析
7,non-parametric memory on dense vector原理分析
8,使用pre-trained neural retriever背后的贝叶斯数学原理剖析
9,prepare_seq2seq_batch源码完整实现分析
10,RagTokenizer源码完整实现分析
11,RetrievAugLMMarginOutput源码完整实现分析
12,RetrievAugLMOutput源码完整实现分析
13,from_pretrained_question_encoder_generator源码完整实现分析
14,RagPreTrainedModel源码完整实现分析
15,RagModel源码完整实现分析
16,generat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

段智华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值