文本纠错(Text Correction)是自然语言处理(NLP)中的一个重要任务,旨在自动检测并修正文本中的错误,包括拼写、语法、语义等层面的错误。其核心目标是通过算法模型将错误文本转换为符合语言规范的表达。该任务在自动写作辅助、搜索引擎优化、智能客服、教育等多个领域具有广泛应用。
-
输入:包含错误的原始文本(如“我明天要去北京,希望天汽好。”)
-
输出:修正后的规范文本(如“我明天要去北京,希望天气好。”)
-
应用场景:输入法纠错、OCR后处理、教育辅助(作文批改)、社交媒体内容清洗等。
文本纠错一般可以分为以下几类:
-
拼写错误(Spelling Errors)
-
字形错误:形近字(如“拨”误写为“拔”)
-
拼音错误:同音异字(如“天气”误写为“天汽”)
-
-
语法错误(Grammatical Errors)
-
主谓不一致(如“他们喜欢跑步和游泳”ÿ
-