1.机器学习和人工智能
机器学习在增强计算机系统演进、学习和编程的能力。许多企业利用它来减弱对操作人员的依赖,尤其是重复性活动方面。这种自动化为技能娴熟的人员大大提高了工作效率。
无论是Siri、Alexa、Google Home,还是一整套支持人工智能的应用软件,对QE的需求会继续增长,尤其是为了确保关键流程的效率和效果,并确认预期的结果。无人驾驶汽车和送货无人机已成了现实,但唯有借助严格的测试和QE才能让它们大获成功。这两方面正在进行大量的实验,以便这项技术更具吸引力。
2.物联网
吸引人又有创造性的物联网一向是全球企业和行业的试验点。据波士顿咨询集团声称,到2020年物联网市场预计将达到2670亿美元。物联网的应用已遍布各行各业,将成为推动发展的一大因素。同样重要的是让物联网设备能够整体运作起来的设备和应用软件的性能。大量的数据事务可能需要监控和监视,确保每一次交互安全、一致。从长远来看这将进一步促进物联网的发展。
3.安全
“如果我的系统被黑,会怎么样?”,“我的数据安全计划有多好?”,由于网络安全威胁和不断上升的风险,你肯定会有这样的问题。在整个数字化转型阶段,安全会继续越来越让人担心。无论是联网设备、人工智能、VR还是AR,都会有需要安全接口的开放节点。安全将是企业决策、高层讨论和发展战略的重点。
4.数字孪生
作为Gartner 2017年度十大战略技术趋势之一,数字孪生(digital twin)技术日益成为一项要求,它让企业得以探究将虚拟想法转化为实际现实的方法。该报告进一步指出:“到2020年估计有210亿个联网的传感器和端点,在不远的将来数十亿个设备会有相应的数字孪生。”
这涉及配备传感器的智能部件实时整理数据,这些数据本质上离不开上下文。质量工程能够支持传感器无缝工作、上下文数据顺畅交换。
5.区块链
区块链这个概念日益受欢迎,许多企业积极探讨其在各个领域的应用,以利用固有的优势。Gartner声称:“该技术有望改变行业;虽然谈话常常围绕其在金融界的机遇,但区块链在政府、医疗、内容分发和供应链等方面大有用武之地。”
当前的挑战不仅在于发挥潜力,还在于克服局限性,围绕这项技术打造商机。由于许多行业探究运用区块链的方式,我认为QE可能会因而成为开发过程的一个必要方面。
6.机器人
机器人可以让你的生活变得轻松。这是人们对这项技术的看法。机器人的应用遍布众多行业,包括咨询和服务领域。这种机器人可以执行各种任务,与消费者进行互动,处理其他日常任务。其想法是使重复性活动实现自动化,那样你的员工有空执行更复杂的任务。
实际上,瞻博网络公司最近预测,到2022年,使用聊天机器人的企业每年可以为医疗和银行业节省80亿美元。这项技术还有望在未来几年大举进入其他领域。
7.智能应用软件
人工智能正渗入到几乎各个方面;一个日益流行的趋势是,将它运用于企业应用软件以改善业务成果。目标是构建可访问大量数据的应用软件,并且利用处理能力,将人工智能和高级机器学习运用于该数据。企业需要高速处理应用软件,支持更合理的决策和快速周转。最终,应用软件必须提供可付诸行动的业务和客户洞察力,以便做出决策,获得良好的业务成果。
8.云实施
云实施不断运行,为数字化转型领域的软件开发过程提供连接、带宽可扩展性和更强大的功能。据劳伦斯伯克利国家实验室声称,利用云计算有望将IT能耗最多降低87%。
9.商业智能和数据分析
数据将在构建下一代设备方面发挥重要作用。每个交互、事务和策略将在数据交换平台上运行,并加以分析。数据分析将引入商业智能(BI),以构建企业进一步发展和增长所需的战略和技术。BI技术将有助于为业务运营构建历史视图、当前视图和未来视图。
10.移动和客户端计算
移动通信需要什么?它包括移动通信、移动硬件和移动软件。其基本想法是集中数据和通信,从而增强移动性,帮助数据无缝流动。简化信息流动、与客户系统交互将成为数字化转型过程中的一个促进因素。
人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,有兴趣的朋友,可以查阅多智时代,在此为你推荐几篇优质好文:
1.人工智能时代,AI人才都有哪些特征?
http://www.duozhishidai.com/article-1792-1.html
2.大数据携手人工智能,高校人才培养面临新挑战
http://www.duozhishidai.com/article-7555-1.html
3.人工智能,机器学习和深度学习之间,主要有什么差异
http://www.duozhishidai.com/article-15858-1.html
4.大数据人工智能领域,如何从菜鸟晋级为大神
http://www.duozhishidai.com/article-1427-1.html