CNNs可以自动从(通常是大规模)数据中学习特征,并把结果向同类型未知数据泛化。
选用卷积的原因:
局部感知:
简单来说,卷积核的大小一般小于输入图像的大小(如果等于则是全连接),因此卷积提取出的特征会更多地关注局部 ——
这很符合日常我们接触到的图像处理。而每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,
然后在更高层将局部的信息综合起来就得到了全局的信息。
参数共享:
参数共享最大的作用莫过于很大限度地减少运算量了。
多核:
一般我们都不会只用一个卷积核对输入图像进行过滤,因为一个核的参数是固定的,其提取的特征也会单一化。
这就有点像是我们平时如何客观看待事物,必须要从多个角度分析事物,这样才能尽可能地避免对该事物产生偏见。
我们也需要多个卷积核对输入图像进行卷积。
CNN的优点和缺点:
优点:
1、共享卷积核,对高维数据处理无压力
2、需手动选取特征,训练好权重,即得特征分类效果好
缺点:
1、Cnn的生物学基础支持不足,没有记忆功能。
神经网络并不是每个神经元关注的是一个特征,而一组神经元关注一个特征。
一组可以输出一个向量,而一个输入只能输出一个数值。
2、Cnn全连接模式过于冗余而低效。
3、Cnn胜在特征检测,但特征理解不行
pooling(池化)的好处有什么?
1. 这些统计特征能够有更低的维度,减少计算量。
2. 不容易过拟合,当参数过多的时候很容易造成过度拟合。
3. 缩小图像的规模,提升计算速度。
Pooling 的意义,主要有两点:
其中一个显而易见,就是减少参数。通过对 Feature Map 降维,有效减少后续层需要的参数。
另一个则是 Translation Invariance。它表示对于 Input,当其中像素在邻域发生微小位移时,Pooling Layer 的输出是不变的。这就使网络的鲁棒性增强了,有一定抗扰动的作用。
权值共享:
权值共享(共同使用一个卷积核),那么将可以大大减少卷积核的数量,加快运算速度。
卷积操作有两个问题:
1. 图像越来越小;
2. 图像边界信息丢失,即有些图像角落和边界的信息发挥作用较少。因此需要padding。
Pooling(池化)的好处以及CNN优缺点
最新推荐文章于 2024-12-04 09:21:14 发布