泰勒公式简介

泰勒公式

带小o余项(佩亚余项)的泰勒公式

描述

设函数 fU(a,η) 有定义,在a点有n阶导数,那么
f ( x ) = o ( ( x − a ) n ) + ∑ i = 0 n f ( i ) ( a ) i ! ( x − a ) i f(x) = o((x-a)^n) + \sum_{i=0}^n \frac{f^{(i)}(a)}{i!}(x-a)^i f(x)=o((xa)n)+i=0ni!f(i)(a)(xa)i

证明

引理 1

设函数 fU(a,η) 有定义, 在a点有n阶导数,且
$ f^{(i)}(a) = 0, i = 0,…,n $ 。则
f ( x ) = o ( ( x − a ) n ) f(x) = o((x-a)^n) f(x)=o((xa)n)

证明

应用洛必达法则。
lim ⁡ x − > a f ( x ) ( x − a ) n = f ( n ) ( x ) n ! = 0 \lim_{x->a} \frac{f(x)}{(x-a)^n} =\frac{f^{(n)}(x)}{n!} = 0 x>alim(xa)nf(x)=n!f(n)(x)=0
所以
f ( x ) = o ( ( x − a ) n ) f(x) = o((x-a)^n) f(x)=o((xa)n)

引理 2

设函数 fg, 有
$ f^{(i)}(a) = g^{(i)}(a), i = 0,…,n $ 。则
f ( x ) − g ( x ) = o ( ( x − a ) n ) f(x)-g(x) = o((x-a)^n) f(x)g(x)=o((xa)n)

证明

令 h(x) = f(x) - g(x), 则
$ h^{(i)}(x) = 0, i = 0,…,n $
,
应用引理1,证出
$ h(x) = o((x-a)^n) $
, 所以
f ( x ) − g ( x ) = o ( ( x − a ) n ) f(x)-g(x) = o((x-a)^n) f(x)g(x)=o((xa)n)

原命题证明

回到原命题,令
g ( x ) = ∑ i = 0 n f ( i ) ( a ) i ! ( x − a ) i g(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!}(x-a)^i g(x)=i=0ni!f(i)(a)(xa)i

g ( j ) ( x ) = ∑ i = j n f ( i ) ( a ) ( i − j ) ! ( x − a ) ( i − j ) g^{(j)}(x) = \sum_{i=j}^n \frac{f^{(i)}(a)}{(i-j)!}(x-a)^{(i-j)} g(j)(x)=i=jn(ij)!f(i)(a)(xa)(ij)
把第一项分离出来得到
f ( j ) ( a ) + ∑ i = j + 1 n f ( i ) ( a ) ( i − j ) ! ( x − a ) ( i − j ) f^{(j)}(a) + \sum_{i=j+1}^n \frac{f^{(i)}(a)}{(i-j)!}(x-a)^{(i-j)} f(j)(a)+i=j+1n(ij)!f(i)(a)(xa)(ij)
将x=a代入得到
g ( j ) ( a ) = f ( j ) ( a ) + ∑ i = j + 1 n f ( i ) ( a ) ( i − j ) ! ( a − a ) ( i − j ) = f ( j ) ( a ) g^{(j)}(a) = f^{(j)}(a) + \sum_{i=j+1}^n \frac{f^{(i)}(a)}{(i-j)!}(a-a)^{(i-j)} = f^{(j)}(a) g(j)(a)=f(j)(a)+i=j+1n(ij)!f(i)(a)(aa)(ij)=f(j)(a)
于是就可以应用引理2得到
f ( x ) − g ( x ) = o ( ( x − a ) n ) f(x)-g(x) = o((x-a)^n) f(x)g(x)=o((xa)n)
将g(x)替换回去
f ( x ) = o ( ( x − a ) n ) + ∑ i = 0 n f ( i ) ( a ) i ! ( x − a ) i f(x) = o((x-a)^n) + \sum_{i=0}^n \frac{f^{(i)}(a)}{i!}(x-a)^i f(x)=o((xa)n)+i=0ni!f(i)(a)(xa)i

有限增量(带拉格朗日余项)的泰勒公式

描述

设函数 fI 有知道n阶的连续导数,在
I 0 I^{0} I0 有n+1阶导数,a,x ∈ I,则
f ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( ξ − a ) ( n + 1 ) + ∑ i = 0 n f ( i ) ( a ) i ! ( x − a ) i f(x) = \frac{f^{(n+1)}(ξ)}{(n+1)!}(ξ-a)^{(n+1)} + \sum_{i=0}^n \frac{f^{(i)}(a)}{i!}(x-a)^i f(x)=(n+1)!f(n+1)(ξ)(ξa)(n+1)+i=0ni!f(i)(a)(xa)i

证明

引理 1

设函数 ϕI 有知道n阶的连续导数,在
I 0 I^{0} I0 有n+1阶导数,a,x ∈ I, 且
$ ϕ^{(i)}(a) = 0, i = 0,…,n $ 。则
ϕ ( x ) = ϕ ( n + 1 ) ( ξ ) ( n + 1 ) ! ( ξ − a ) ( n + 1 ) ϕ(x) = \frac{ϕ^{(n+1)}(ξ)}{(n+1)!}(ξ-a)^{(n+1)} ϕ(x)=(n+1)!ϕ(n+1)(ξ)(ξa)(n+1)

证明

ψ ( x ) = ( x − a ) n ψ(x) = (x-a)^n ψ(x)=(xa)n , 则 ψ ( i ) ( a ) = 0 , i = 0 , . . . , n ψ^{(i)}(a) = 0, i = 0,...,n ψ(i)(a)=0,i=0,...,n
那么
ϕ ( x ) ψ ( x ) = ϕ ( x ) − ϕ ( a ) ψ ( x ) − ψ ( a ) \frac{ϕ(x)}{ψ(x)} = \frac{ϕ(x) - ϕ(a)}{ψ(x) - ψ(a)} ψ(x)ϕ(x)=ψ(x)ψ(a)ϕ(x)ϕ(a)
利用柯西中值定理
ϕ ( x ) ψ ( x ) = ϕ ′ ( ξ 1 ) ψ ′ ( ξ 1 ) = ϕ ′ ( ξ 1 ) − ϕ ′ ( a ) ψ ′ ( ξ 1 ) − ϕ ′ ( a ) \frac{ϕ(x)}{ψ(x)} = \frac{ϕ'(ξ_1)}{ψ'(ξ_1)} = \frac{ϕ'(ξ_1) - ϕ'(a)}{ψ'(ξ_1) - ϕ'(a)} ψ(x)ϕ(x)=ψ(ξ1)ϕ(ξ1)=ψ(ξ1)ϕ(a)ϕ(ξ1)ϕ(a)
继续利用柯西中值定理
ϕ ( x ) ψ ( x ) = ϕ ′ ′ ( ξ 2 ) ψ ′ ′ ( ξ 2 ) \frac{ϕ(x)}{ψ(x)} = \frac{ϕ''(ξ_2)}{ψ''(ξ_2)} ψ(x)ϕ(x)=ψ(ξ2)ϕ(ξ2)
利用n+1次
ϕ ( x ) ψ ( x ) = ϕ ( n + 1 ) ( ξ n + 1 ) ψ ( n + 1 ) ( ξ n + 1 ) \frac{ϕ(x)}{ψ(x)} = \frac{ϕ^{(n+1)}(ξ_{n+1})}{ψ^{(n+1)}(ξ_{n+1})} ψ(x)ϕ(x)=ψ(n+1)(ξn+1)ϕ(n+1)(ξn+1)
ξ = ξ n + 1 ξ = ξ_{n+1} ξ=ξn+1,
ϕ ( x ) ( x − a ) n = ϕ ( n + 1 ) ( ξ ) ( n + 1 ) ! \frac{ϕ(x)}{(x-a)^n} = \frac{ϕ^{(n+1)}(ξ)}{(n+1)!} (xa)nϕ(x)=(n+1)!ϕ(n+1)(ξ)

ϕ ( x ) = ϕ ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − a ) n ϕ(x) = \frac{ϕ^{(n+1)}(ξ)}{(n+1)!}(x-a)^n ϕ(x)=(n+1)!ϕ(n+1)(ξ)(xa)n

原命题证明

回到原命题, 令 ϕ ( x ) = f ( x ) − ∑ i = 0 n f ( i ) ( a ) i ! ( x − a ) i 令 ϕ(x) = f(x) - \sum_{i=0}^n \frac{f^{(i)}(a)}{i!}(x-a)^i ϕ(x)=f(x)i=0ni!f(i)(a)(xa)i, 则 ϕ ( i ) ( a ) = 0 , i = 0 , . . . , n ϕ^{(i)}(a) = 0, i = 0,...,n ϕ(i)(a)=0,i=0,...,n

应用引理1
ϕ ( x ) = ϕ ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − a ) n ϕ(x) = \frac{ϕ^{(n+1)}(ξ)}{(n+1)!}(x-a)^n ϕ(x)=(n+1)!ϕ(n+1)(ξ)(xa)n
可发现 ϕ ( n + 1 ) ( ξ ) = f ( n + 1 ) ( ξ ) ϕ^{(n+1)}(ξ) = f^{(n+1)}(ξ) ϕ(n+1)(ξ)=f(n+1)(ξ), 代入得到
f ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( ξ − a ) ( n + 1 ) + ∑ i = 0 n f ( i ) ( a ) i ! ( x − a ) i f(x) = \frac{f^{(n+1)}(ξ)}{(n+1)!}(ξ-a)^{(n+1)} + \sum_{i=0}^n \frac{f^{(i)}(a)}{i!}(x-a)^i f(x)=(n+1)!f(n+1)(ξ)(ξa)(n+1)+i=0ni!f(i)(a)(xa)i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值