(二)线性回归模型

文章介绍了使用线性回归模型预测房价的过程,包括模型参数w和b的计算。通过代价函数(CostFunction)衡量预测误差,并利用梯度下降算法逐步优化模型参数,以达到最小化误差的目标。文章还展示了在不同w值下代价函数的图形变化,以及梯度下降算法的迭代过程。
摘要由CSDN通过智能技术生成

房价预测案例


我们有一些关于房屋尺寸 f e e t 2 feet^2 feet2)和房屋价格 p r i c e price price,单位是“千美元”)的数据,假设一位客户问你她的房子能卖多少钱?该如何回答。
我们可以基于现有数据拟合出一条直线(图下蓝色),这条直线就是模型,只要知道客户的房屋尺寸( f e e t 2 feet^2 feet2),根据模型就能预测一个售卖价格(如房屋尺寸=2104,对应预测价格大概350,与真实售卖价格400略有误差)。
房价数据
一些术语与标记符号

  • 训练集(Training set):为了得到模型需要一些数据对模型进行训练,这部分数据就是训练集;
  • 测试集(Testing set):为了评估训练出来的模型好坏,需要一部分未参与训练的数据进行测试,这部分数据称为测试集。

以下是一些常用的数据标记符号

符号 解释
x x x 输入变量(特征)
y y y 输出变量(目标变量)
m m m 数据的条数
x ( 1 ) = 2104 , y ( 1 ) = 400 x^{(1)}=2104, y^{(1)}=400 x(1)=2104,y(1)=400 第1条数据的x为2104,第1条数据的y为400
( x ( i ) , y ( i ) ) (x^{(i)},y^{(i)}) (x(i),y(i)) i i i条数据
y ^ \hat{y} y^ 模型预测输出的值
w w w 模型参数(权重系数)
b b b 模型参数(截距)
f f f 模型(函数)

机器学习中的符号标记

线性回归(Linear Regression)


模型学习过程:
算法从训练数据集中学习到一个函数 f f f(或叫假设) f f f的作用是只要给它一个 x x x,它就输出一个 y ^ \hat{y} y^(又叫估计值或预测值)。比如给 f f f输入一个房屋尺寸,它就能输出一个房屋价格(预测价格)。 f f f可以写成:
f w , b ( x ) = w x + b f_{w,b}(x)=wx+b fw,b(x)=wx+b
f f f为图中蓝色线,这个函数(模型)又叫线性回归,当 x x x只有一个特征时(这里只有房屋尺寸)称为单变量线性回归
模型的定义
我们知道了 f f f的作用和生成它的过程,但是这个公式中的 w w w b b b到底是如何计算出来的呢?

代价函数 (Cost Function)


上面可知 f f f蓝色线)是通过许多条训练数据 ( x ( i ) , y ( i ) ) (x^{(i)},y^{(i)}) (x(i),y(i))计算得到,而整个计算可转化为一个优化问题
假设我们有未知参数 w w w b b b,一个 x ( i ) x^{(i)} x(i)代入 f w , b f_{w,b} fw,b中就可以得到一个 y ^ ( i ) \hat{y}^{(i)} y^(i),所以我们自然会想到要使原来的 y ( i ) {y}^{(i)} y(i)和估计值 y ^ ( i ) \hat{y}^{(i)} y^(i)越接近越好(因为 y ^ ( i ) \hat{y}^{(i)} y^(i)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值