如何澄清“一句话需求”?

有的项目在描述系统需求时,往往是用一句简单的话来描述需求,在一句话需求中描述包含的信息有如下的情形:

类型

案例

说明

包含了一个功能

可以将发票通过邮件发送给客户。

包含了一组功能

具有手工录入、批量删除、导出、导入等功能。

4个功能:录入、删除、导入、导出

包含了一个功能的业务逻辑

支持权限控制,只有分配权限的人员才可以进行台账初始。

包含了一个功能的细节要求

在录入单据时,可以提供供应商信息的帮助功能。

同时包含了功能与处理逻辑

支持自定义审批流程。提单人提交单据后,按照既定流程审批,审批完成后台账信息生效。

2个功能:自定义流程、审批2个功能

1个处理逻辑:审批完成后台账信息生效

......

   

在一句话需求中,往往存在如下的问题:

类型

案例

说明

数据对象不全

支持台账的录入、删除与导入、导出功能。

此处的台账实际包含5种台账,每种台账的数据项、处理逻辑是不同的。看着一句话,实际功能个数是5倍。

数据属性不全

支持自定义查询条件进行查询。比如设置开始日期、结束日期、关键字段等进行过滤查询。

这里的关键字段还有哪些呢?

缺少业务逻辑的详细描述

支持入库单的导入功能。

导入时是否要判断合法性呢?规则是什么?

层次关系混乱

支持手工录入、帮助、批量删除、导出、导入等功能。

此处的帮助功能和录入、删除、导入导出是并列同级的吗?还是帮助是录入功能里的一个细节特性?

......

对这种一句话需求进行澄清时,可以采用如下的问题:

词性

问题

名词

它的具体含义是什么?

它是否还有子类?

它是否还有其他属性?

它的取值范围是什么?

有无缺省值?

是否可以为空值?

如果是数值,有无精度要求?

它的输出输出格式有无什么要求?

它是否和其他名词是相同的含义?

它的出现频度最高多大?

动词

它的具体含义是什么?

它是否还有其他的分支场景?

它的处理规则是什么?

它的人机交互交互动作序列是什么?

它处理的数据是什么?

它和其他动词是否有相同的含义?

它是一个功能,还是一个处理逻辑?

如果是处理逻辑,它从属于哪个功能?

它的执行频度最高多大?

副词与形容词

是否可以量化?

如果不能量化是否可以删除?

量词

数值大小是否合理?

<think>好的,用户之前已经询问过层次聚类和多重共线性的关系,现在他们再次明确询问到底什么是多重共线性,说明之前的解释可能需要更进步的澄清或简化。用户可能对之前的术语或例子不太理解,或者希望得到更基础的解释。 首先,我需要确保定义准确且容易理解。多重共线性通常在回归分析中出现,所以需要联系这个背景。用户可能没有统计学背景,所以要用简单的例子,比如收入和消费的例子,这样更贴近生活。 接下来,要区分完全共线性和高度相关性,避免混淆。之前的回答用了数学公式,可能需要用更直白的语言代替,或者保留但解释清楚。比如,解释为什么系数不全为零的线性组合接近零会导致问题。 还要注意用户的潜在需求,他们可能在处理数据时遇到了共线性问题,或者在聚类后做回归分析,所以需要知道如何检测和处理。虽然用户现在只问定义,但补充检测和处理方法能提供更完整的帮助,但这次要集中在定义上,避免信息过载。 需要检查是否有术语使用不当,比如“福哦冲共线性”可能是用户输入错误,之前纠正过,但这次用户正确输入了,所以不用再提及。保持回答结构清晰,用分点或例子来增强可读性。 最后,确保语言口语化,避免学术化过重,同时保持专业性。用比喻或类比帮助理解,比如镜子、杠杆等比喻是否合适。可能需要用更常见的比喻,比如“重复的信息”或“双胞胎变量”让用户更容易记住。</think>--- ### **多重共线性简明解析** **句话定义**: 当多个特征之间存在「强关联性」,导致模型难以区分它们各自的影响时,就出现了多重共线性问题。 --- ### **通俗理解** 想象分析「房屋价格预测」时同时使用: - 客厅面积(平方米) - 卧室面积(平方米) - **总建筑面积**(客厅+卧室+其他) 这里总建筑面积与其他面积指标存在**精确的数学关系**,这就是典型的完全共线性。模型会困惑: "我该用总建筑面积还是分项面积来解释价格变化?" --- ### **两种典型形式** | 类型 | 表现 | 实例 | |------|------|------| | **完全共线性** | 特征间存在精确线性关系 | $X_3 = 2X_1 + X_2$ | | **高度相关性** | 特征间强相关但非精确线性 | 气温与冰淇淋销量(相关系数0.95) | --- ### **形象比喻** 把特征看作解释问题的「杠杆」: - 正常情况:每个杠杆独立发力(特征独立) - 共线性时:多个杠杆被焊接在起(特征联动) → 无法判断是哪个杠杆真正起作用 --- ### **数学本质** 若存在不全为零的系数$c_1,c_2,...,c_k$使得: $$ c_1X_1 + c_2X_2 + \cdots + c_kX_k \approx 0 $$ 即这些特征能**近似线性组合出常数**,就存在多重共线性 --- ### **现实影响** 1. **系数不稳定**:微小数据变动导致参数剧烈波动 2. **解释性下降**:难以判断单个特征的真实作用 3. **计算故障**:可能导致矩阵不可逆(完全共线性时) --- ### **快速检测方法** - **相关系数矩阵**:任意两特征相关系数 > 0.8 需警惕 - **方差膨胀因子(VIF)**: $$\text{VIF} = \frac{1}{1-R^2}$$ VIF > 10 表示严重共线性 --- ### **经典案例** 在预测糖尿病风险的模型中同时使用: - 体重(kg) - 体脂率(%) - BMI指数(体重/身高²) 由于BMI本身由体重计算得出,这三个特征就会形成共线性「铁三角」。 --- **关键点总结**: 多重共线性不是特征本身的错误,而是特征组合方式的问题。就像不能同时用「厘米」和「米」测量同个物体,关键是要保证特征提供**独立的信息价值**。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值