论文解读《基于卷积神经网络的路表病害识别与测量》

本文介绍了利用卷积神经网络(CNN)进行沥青路面病害识别、定位和测量的研究。文章设计了三种CNN,分别用于病害识别、裂缝特征提取和坑槽特征提取。通过图像预处理、训练和测试,CNN能够准确识别病害类型,并通过反卷积层实现病害区域的定位和测量,减少了人工干预的需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标题:基于卷积神经网络的路表病害识别与测量
作者:沙爱民等
期刊:中国公路学报(2018,2019)

Tong等[20]利用卷积神经网络对沥青路面的探地雷 达图像进行了反射裂缝的识别、定位、测量和三维重 建

涉及到定位、测量和三维重建,可以重点关注tong这一篇文章。启示我们可以在定位、测量和三维重建上面做一些工作。

本文共设计3种CNN, 分别用于病害识别(CNN1)、裂缝特征提取(CNN2)坑槽特征提取(CNN3)。首先,对所采集的路面 图像进行简单的预处理并作为CNN1训练样本。
其次,经结构设计、前反馈算法训练及样本测试3个 步骤后,建立 CNN1。
之后,将训练完成的 CNN1== 输出结果==作为 CNN2和 CNN3的训练样本。相似 地,经结构设计、前反馈算法训练及样本测试3个步 骤后建立ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值