论文解读《基于卷积神经网络的路表病害识别与测量》

本文介绍了利用卷积神经网络(CNN)进行沥青路面病害识别、定位和测量的研究。文章设计了三种CNN,分别用于病害识别、裂缝特征提取和坑槽特征提取。通过图像预处理、训练和测试,CNN能够准确识别病害类型,并通过反卷积层实现病害区域的定位和测量,减少了人工干预的需求。
摘要由CSDN通过智能技术生成

标题:基于卷积神经网络的路表病害识别与测量
作者:沙爱民等
期刊:中国公路学报(2018,2019)

Tong等[20]利用卷积神经网络对沥青路面的探地雷 达图像进行了反射裂缝的识别、定位、测量和三维重 建

涉及到定位、测量和三维重建,可以重点关注tong这一篇文章。启示我们可以在定位、测量和三维重建上面做一些工作。

本文共设计3种CNN, 分别用于病害识别(CNN1)、裂缝特征提取(CNN2)坑槽特征提取(CNN3)。首先,对所采集的路面 图像进行简单的预处理并作为CNN1训练样本。
其次,经结构设计、前反馈算法训练及样本测试3个 步骤后,建立 CNN1。
之后,将训练完成的 CNN1== 输出结果==作为 CNN2和 CNN3的训练样本。相似 地,经结构设计、前反馈算法训练及样本测试3个步 骤后建立ÿ

水稻病害识别是一个常见的计算机视觉问题,卷积神经网络(CNN)是处理这类问题的常见方法之一。以下是实现基于CNN的水稻病害识别的大致步骤: 1. 数据集准备:收集水稻病害图像并标记它们,分为训练集和测试集。 2. 特征提取:使用卷积层和池化层提取图像特征。 3. 分类器设计:使用全连接层和softmax分类器进行分类。 4. 模型训练:使用训练集对模型进行训练,使用交叉熵损失函数和随机梯度下降(SGD)优化器。 5. 模型评估:使用测试集对模型进行评估,计算准确率、精确率和召回率等指标。 以下是一个简单的基于CNN的水稻病害识别模型的代码示例: ```python import tensorflow as tf from tensorflow.keras import layers, models # 创建模型 model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(256, 256, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(4, activation='softmax')) # 编译模型 model.compile(optimizer='SGD', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels)) # 评估模型 test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print("Test accuracy:", test_acc) ``` 在这个示例中,我们使用了3个卷积层和2个全连接层来构建模型。我们还使用了SGD优化器和交叉熵损失函数来训练模型。最后,我们使用测试集评估了模型的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值