浅谈垂直领域大模型


在谈垂直领域大模型之前,我们先对目前的大模型做一个简单的梳理,看看大模型都有哪些。

大模型都有哪些?

大模型一般可以分为通用大模型垂直领域大模型

通用大模型很好理解,就是使用大量通用数据进行预训练的大模型,通常会具备两种特点:跨任务的通用性和跨域的通用性。

垂直领域大模型有很多别名,如领域大模型,行业大模型,垂直大模型,说的都是一个意思。垂直领域大模型是指在特定的领域或行业中经过训练和优化的大型语言模型。与通用大模型相比,垂直领域大模型更专注于某个特定领域的知识和技能,具备更高的领域专业性和实用性。

垂直领域大模型的优劣势

与通用大模型相比,垂直领域大模型具有以下优势和劣势:

优势

  • 领域专业性:垂直领域大模型经过专门的训练,能够更好地理解和处理特定领域的知识、术语和上下文。
  • 高质量输出:由于在特定领域中进行了优化,垂直领域大模型在该领域的输出质量通常比通用大模型更高。
  • 特定任务效果更好:对于特定领域的任务,垂直领域大模型通常比通用大模型表现更好。

劣势

  • 数据需求和训练成本:垂直领域大模型需要大量的特定领域数据进行训练,这可能会面临数据收集和标注的挑战。
  • 适应性限制:垂直领域大模型在特定领域中的适应性较强,但在其他领域的表现可能相对较弱。
  • 更新和维护成本:由于特定领域的知识和要求经常变化,垂直领域大模型需要定期更新和维护,以保持与新发展的同步。

垂直领域大模型的几种形式

垂直领域大模型有以下几种形式:

  • 基于垂直领域数据对通用大模型的微调,也使用垂直领域数据通过某些微调方式(如LoRA、P-Tuning等)对通用大模型进行微调;当然,也有基于垂直领域数据在通用大模型的基础上进行继续预训练;
  • 只使用垂直领域数据预训练大模型
  • 使用垂直领域数据和通用数据的混合数据预训练大模型,如BloombergGPT;
  • 使用领域知识库结合通用大模型完成知识问答,例如使用Langchain +ChatGLM完成知识问答,具体就是先使用词向量模型找到文档中和问题相似的文本,利用大模型的总结能力对文本进行汇总作为输出;

以上是4种不同的垂直领域数据大模型,目前比较主流的是第1种和第4种。

而除了上述4种外,构造垂直领域的prompt 算是通用模型在垂直领域的一种应用:例如直接用in context learning的方法,通过构造和领域相关的prompt,由通用大模型直接生成回复。

垂直领域大模型的几点看法

我比较认同的点如下:

  • 使用领域数据从头预训练一个大模型,可能会有比较好的效果,但由于大模型的参数量通常比较大才会有涌现能力,所以也需要大量的高质量的领域数据。
  • 对于垂直领域大模型,只需要在垂直领域上的效果由于大模型就可以了,不必再要求其具有通用大模型的其他能力。
  • 在7B、13B这种规模的参数下,领域模型是要优于通用模型的。

领域大模型的常见问题

Q:我有很多的技术标准和领域文本数据,直接给你就能训练领域大模型了吧?

A:是也不是,纯文本只能用于模型的预训练,真正可以进行后续问答,需要的是指令数据。当然可以采用一些人工智能方法生成一些指数据,但为了保证事实性,还是需要进行人工校对的。高质量SFT数据,才是模型微调的关键。

Q:你用领域数据微调过的大模型,为什么不直接问答,还要用你的知识库?

A:外部知识主要是为了解决模型幻觉、提高模型回复准确。同时,采用外部知识库可以快速进行知识更新,相较于模型训练要快非常多。

参考:
关于大模型和自动驾驶的几个迷思
垂直领域大模型的一些思考及开源模型汇总
【LLM系列】对行业大模型的思考
垂直领域大模型汇总

人工智能领域涵盖了很多不同的方向,这些方向基于不同的算法和技术,可以用于解决不同的问题。下面将就人工智能领域的几个主要方向进行一些浅谈。 1. 机器学习:机器学习是人工智能领域的一个重要方向,它让计算机能够在没有明确的指示下学习和提高自己的性能。机器学习可以分为监督学习、无监督学习和强化学习等。监督学习是利用标记过的数据,让计算机学习如何进行分类、回归等任务。无监督学习是从无标记的数据中抽取特征并进行分类。强化学习是计算机利用反馈机制不断修正自己的决策策略。 2. 自然语言处理:自然语言处理是一种利用计算机对人类自然语言进行处理的技术。其主要的应用包括语音识别、自然语言理解和自然语言生成等。自然语言处理的发展,将使得计算机能够更好地理解人类的语言,进而实现人机交互和自然语义搜索等功能。 3. 计算机视觉:计算机视觉是指通过计算机对视觉对象进行的识别和学习技术。其应用范围非常广泛,包括人脸识别、场景理解、视觉检测等。随着深度学习算法的发展,计算机视觉领域实现了很多重大突破。 4. 人机交互:人机交互是指人和计算机之间通过各种方式进行沟通交流的技术。该领域涵盖了诸多方向,包括语音识别、手势识别、触摸界面等。人机交互的发展将会让人们更加方便地使用计算机和智能设备,提高其工作和生活效率。 以上这些方向仅仅是人工智能领域的冰山一角,随着科技的进步和人们对于AI技术应用的探索,我们可以期待更多有趣的应用会不断涌现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值