Algebra:Chapter0 - 3.2. Examples.

3.2. Examples.

读者应该注意到范畴中90%的符号定义都是用来解释态射的性质;态射是范畴中的一个十分重要的部分。然而,心理上很难避免从范畴对象的角度来想范畴:例如,有人可能会想“集合的范畴”。关键在于通常“态射”才是应该考虑的东西:如果一个人在谈论集合,一个人如果说态射而不是集合的函数会意味着什么呢?

Example 3.2

现在可以很清楚的明白集合(作为对象),以及集合上的函数(作为态射),构成了一个范畴;如果不是的,读者应该在这里停下来而不是继续往前看,直到这个断言消除了残存的疑惑。

对于这个重要的范畴并没有统一接受的官方记号。我们将使用“sans-serif”字体来表示范畴;即, S e t \mathsf{Set} Set表示集合的范畴。因此

  • O b j ( S e t ) = \mathrm{Obj}(\mathsf{Set})= Obj(Set)=所有集合的class;
  • 对于 A , B ∈ O b j ( S e t ) A,B \in \mathrm{Obj}(\mathsf{Set}) A,BObj(Set),即对于 A , B A,B A,B两个集合, H o m S e t ( A , B ) = B A \mathrm{Hom}_{\mathsf{Set}}(A,B)=B^{A} HomSet(A,B)=BA

这里要注意在1.3~1.5节中的操作并不是范畴定义的一部分:这些操作的兴趣在于 S e t \mathsf{Set} Set的属性,这些属性其他的属性有,也可能没有。我们过会儿回到这些属性,并更精确地理解它们对于 S e t \mathsf{Set} Set意味着什么。

Example 3.3

假设 S S S是一个集合,而 ∼ \sim 是集合 S S S上的一个关系,且满足反身性和传递性。那么我们可以将这些数据编码到范畴中:

  • o b j e c t object object S S S中的元素;
  • m o r p h i s m s morphisms morphisms:如果 a a a b b b都是对象(就是如果 a , b ∈ S a,b\in S a,bS),令 H o m ( a , b ) \mathrm{Hom}(a,b) Hom(a,b)是包含了元素 ( a , b ) ∈ S × S (a,b)\in S\times S (a,b)S×S的集合,如果 a ∼ b a\sim b ab,那么令 H o m ( a , b ) = ∅ \mathrm{Hom}(a,b)=\empty Hom(a,b)=

注意(不像在 S e t \mathsf{Set} Set),有很少的态射:每个对象的有序对之多只有一个,在不相关的对象之间根本没有态射。

我们必须定义“态射的复合”,并验证3.1节中的条件是否满足。首先我们是否有“对等”?如果 a a a是一个对象( a ∈ S a\in S aS),我们需要找到一个元素 1 a ∈ H o m ( a , a ) 1_{a}\in \mathrm{Hom}(a,a) 1aHom(a,a)这就是为什么我们要假定 ∼ \sim 是反身性的:这告诉了我们 ∀ a , a ∼ a \forall a,a\sim a a,aa;即 H o m ( a , a ) \mathrm{Hom}(a,a) Hom(a,a)包含了单个元素 ( a , a ) (a,a) (a,a)。因此我们没有选择,只能令: 1 a = ( a , a ) ∈ H o m ( a , a ) 1_{a}=(a,a)\in \mathrm{Hom}(a,a) 1a=(a,a)Hom(a,a)至于复合,令 a , b , c a,b,c a,b,c为元素(即集合 S S S中的元素)并且 f ∈ H o m ( a , b ) , g ∈ H o m ( b , c ) ; f\in \mathrm{Hom}(a,b),\quad g \in \mathrm{Hom}(b,c); fHom(a,b),gHom(b,c);我们必须定义对应的态射 g f ∈ H o m ( a , c ) gf\in \mathrm{Hom}(a,c) gfHom(a,c)。现在, f ∈ H o m ( a , b ) f \in \mathrm{Hom}(a,b) fHom(a,b)告诉我们 H o m ( a , b ) \mathrm{Hom}(a,b) Hom(a,b)是非空的,并且根据这个范畴中态射的定义这意味着 a ∼ b a\sim b ab,并且 f f f A × B A\times B A×B的元素 ( a , b ) (a,b) (a,b)。类似的, g ∈ H o m ( b , c ) g\in \mathrm{Hom}(b,c) gHom(b,c)告诉我们 b ∼ c b\sim c bc并且 g = ( b , c ) g=(b,c) g=(b,c),现在有 a ∼ b   a n d   b ∼ c ⟹ a ∼ c a\sim b\ and\ b\sim c\Longrightarrow a\sim c ab and bcac这是因为我们假定关系 ∼ \sim 具有传递性。这告诉我们 H o m ( a , c ) \mathrm{Hom}(a,c) Hom(a,c)包含了唯一的元素 ( a , c ) (a,c) (a,c)。因此,我们没有别的选择,只能令 g f ≔ ( a , c ) ∈ H o m ( A , C ) gf\coloneqq (a,c)\in \mathrm{Hom}(A,C) gf:=(a,c)Hom(A,C)存在结合性吗?如果 f ∈ H o m ( a , b ) f\in \mathrm{Hom}(a,b) fHom(a,b) g ∈ H o m ( b , c ) g\in \mathrm{Hom}(b,c) gHom(b,c),并且 h ∈ H o m ( c , d ) h\in \mathrm{Hom}(c,d) hHom(c,d),那么 f = ( a , b ) , g = ( b , c ) , h = ( c , d ) f=(a,b),\quad g=(b,c),\quad h=(c,d) f=(a,b),g=(b,c),h=(c,d)因此 h ( g f ) = ( a , d ) = ( h g ) f h(gf)=(a,d)=(hg)f h(gf)=(a,d)=(hg)f所以具有结合性。

读者检查 1 a 1_{a} 1a应该没有啥困难,关于这个复合它是一个恒等的。

最简单的构造范畴的例子是带有等价关系“ = = ="的集合 S S S;唯一的态射就是恒等态射。这样的范畴称为离散的( d i s c r e t e discrete discrete)。

另一个例子是,考虑带有关系 ≤ \leq 的endowing Z \mathbb{Z} Z。例如:

小于等于关系

还不会用latex画这种图

是这个范畴中的一个commutative diagram。

这些范畴都非常的特殊——比如,每个图都是commutative,这和 S e t \mathsf{Set} Set差别很大。我们将这些范畴都是 s m a l l small small的。

Example 3.4.

这里还有另外一个小范畴的例子。令 S S S是一个集合。 S ^ \hat{\mathsf{S}} S^的定义如下:

  • O b j ( S ^ ) = P ( S ) \mathrm{Obj}(\hat{\mathsf{S}})=\mathscr{P}(S) Obj(S^)=P(S),即 S S S的幂集;
  • 对于 S ^ \hat{\mathsf{S}} S^中的两个对象 A A A B B B(即 A ⊆ S A\subseteq S AS并且 B ⊆ S B\subseteq S BS)令 H o m S ^ ( A , B ) \mathrm{Hom}_{\hat{\mathsf{S}}}(A,B) HomS^(A,B)是有序对 ( A , B ) (A,B) (A,B),否则 H o m S ^ ( A , B ) = ∅ \mathrm{Hom}_{\hat{\mathsf{S}}}(A,B)=\empty HomS^(A,B)=

恒等 1 A 1_{A} 1A包含了有序对 ( A , A ) (A,A) (A,A)(这是一个而且也是唯一的一个 A A A A A A的态射,因为 A ⊆ A A\subseteq A AA)。复合也很好理解。这种风格的例子(除了更复杂的结构,比如拓扑空间中开集的族)在某些领域中非常重要,比如代数几何。

Example 3.5.

下一个例子非常抽象,但是它会让我们已经接触到的东西感到非常舒服;它是一个非常常见的结构。

C \mathsf{C} C是一个范畴,令 A A A是范畴 C \mathsf{C} C中的一个对象。我们将定一个范畴 C A \mathsf{C}_{A} CA,它的对象是范畴 C \mathsf{C} C中的某些态射,而它的态射则是范畴 C \mathsf{C} C中的某些图( d i a g r a m s diagrams diagrams)。

这是什么操作???

  • O b j ( C A ) = \mathrm{Obj}(\mathsf{C}_{A})= Obj(CA)=范畴 C \mathsf{C} C中任意对象到 A A A的所有态射;就是 C A \mathsf{C}_{A} CA中的对象是一个态射 f ∈ H o m C ( Z , A ) f\in \mathrm{Hom}_{\mathsf{C}}(Z,A) fHomC(Z,A)对于 C \mathsf{C} C中的某个对象 Z Z Z。用图来表示的话就是, C A \mathsf{C}_{A} CA的对象就是一个箭头 Z → f A Z \xrightarrow{f} A Zf A;这个图通常是从上往下来表示:
    在这里插入图片描述
    那么 C A \mathsf{C}_{A} CA中的态射又是什么呢?

f 1 f_{1} f1 f 2 f_{2} f2 m a t h s f C A mathsf{C}_{A} mathsfCA中的对象,那么有
在这里插入图片描述
态射 f 1 → f 2 f_{1}\rightarrow f_{2} f1f2被定义为 c o m m u t a t i v e   d i a g r a m s commutative\ diagrams commutative diagrams

在这里插入图片描述
态射 f → g f\rightarrow g fg精确地对应到在范畴 C \mathsf{C} C中的态射 σ : Z 1 → Z 2 \sigma:Z_{1}\rightarrow Z_{2} σ:Z1Z2,使得 f 1 = f 2 σ f_{1}=f_{2}\sigma f1=f2σ

一旦你理解了态射是什么,可以检查它们是否满足公理中的条件。恒等继承于 C \mathsf{C} C中的恒等态射:对于 C A \mathsf{C}_{A} CA中的对象 f : Z →   A f:Z\rightarrow\ A f:Z A 1 f 1_{f} 1f对应于对应于 C \mathsf{C} C中的commutes。
在这里插入图片描述
复合操作同样是 C \mathsf{C} C中的副产物。两个态射 f 1 → f 2 → f 3 f_{1}\rightarrow f_{2} \rightarrow f_{3} f1f2f3对应于:
在这里插入图片描述
去掉了中心的箭头可以得到:
在这里插入图片描述
同样还可以检查 m a t h s f C A mathsf{C}_{A} mathsfCA中的复合是具有结合性的。

用这种方法构造的称为 s l i c e   c a t e g o r i e s slice\ categories slice categories,它们是 c o m m a   c a t e g o r i e s comma\ categories comma categories的特例。

Example 3.6.

让我们将Example 3.5中的范畴构造方法应用于Example 3.3中的范畴,对于 S = Z S=\mathbb{Z} S=Z并且 ∼ \sim 为关系 ≤ \leq 。令 C \mathsf{C} C为这个范畴,然后从 C \mathsf{C} C中选择一个对象 A A A,也就是选出一个整数 A A A,例如 A = 3 A=3 A=3。那么 C A \mathsf{C}_{A} CA中的对象就是 C \mathsf{C} C中目标为3的态射,也就是有序对 ( n , 3 ) ∈ Z × Z (n,3)\in \mathbb{Z}\times\mathbb{Z} (n,3)Z×Z,其中 n ≤ 3 n\leq 3 n3。然后就有态射 ( m , 3 ) → ( n , 3 ) (m,3)\rightarrow (n,3) (m,3)(n,3)当且仅当 m ≤ n m\leq n mn。在这个例子中 C A \mathsf{C}_{A} CA可以对等于“子范畴” ≤ 3 \leq 3 3的整数,和 C \mathsf{C} C有相同的态射。

Example 3.7.

一个完全和Example 3.5中相似的例子是考虑从范畴 C \mathsf{C} C中的固定目标 A A A到所有对象的态射,然后新的态射还是合适的commutative diagrams。这样的话就构造了 c o s l i c e   c a t e g o r i e s coslice\ categories coslice categories。读者应该提供这些构造的细节。

Example 3.8.

作为Example 3.7中的一个具体例子,令 C = S e t \mathsf{C}=\mathsf{Set} C=Set并且 A = a A=a A=a是一个固定的单元素集合 { ∗ } \{*\} {}。将构造的范畴称为 S e t ∗ \mathsf{Set}^{*} Set

那么在范畴 S e t ∗ \mathsf{Set}^{*} Set中的一个对象就是在范畴 S e t \mathsf{Set} Set中的 f : { ∗ } → S f: \{*\}\rightarrow S f:{}S,其中 S S S是任意集合。而在范畴 S e t ∗ \mathsf{Set}^{*} Set中的对象则是一个非空集合 S S S和一个元素 s ∈ S s\in S sS就是 f ( ∗ ) f(*) f()。我们可以将范畴 S e t ∗ \mathsf{Set}^{*} Set中的对象记作有序对 ( S , s ) (S,s) (S,s),其中 S S S是任意一个集合,而 s ∈ S s\in S sS S S S中的任意一个元素。

在这两个对象之间的态射 ( S , s ) → ( T , t ) (S,s)\rightarrow (T,t) (S,s)(T,t),就对应了一个集合-函数 σ : S → T \sigma:S\rightarrow T σ:ST,使得 σ ( s ) = t \sigma(s)=t σ(s)=t

范畴KaTeX parse error: Expected 'EOF', got '&' at position 13: \mathsf{Set}&̲=^{*}中的对象称为“pointed sets”,我们在这本书中研究的很多结构都是pointed sets。例如群(group)是一个集合 G G G,有唯一的元素 e G e_{G} eG,以及“group homomorphisms”作为函数。

多补充一些像 Example 3.5和Example 3.7类似的抽象例子很有好处。

这次我们从一个给定的范畴 C \mathsf{C} C C \mathsf{C} C中的两个对象 A A A B B B开始。我们可以定义一个新的范畴 C A , B \mathsf{C}_{A,B} CA,B,就像我们在定义 C A \mathsf{C}_{A} CA中用到的那样:

O b j ( C A , B ) = C 中 的 图 \mathrm{Obj}(\mathsf{C}_{A,B})=\mathsf{C}中的图 Obj(CA,B)=C
在这里插入图片描述
而态射则是从图到图:
在这里插入图片描述
commutative diagrams则是
在这里插入图片描述
我们将正规化这些粗糙的描述任务交给读者。这个例子只是 C A \mathsf{C}_{A} CA C B \mathsf{C}_{B} CB的混合,这两个结构因为相同的 σ \sigma σ而交互起来: f 1 = f 2 σ a n d g 1 = g 2 σ f_{1}=f_{2}\sigma\quad and \quad g_{1}=g_{2}\sigma f1=f2σandg1=g2σ翻转大部分的箭头可以得到Example 3.7的变体,生成了新的范畴 C A , B \mathsf{C}^{A,B} CA,B

Example 3.10.

作为这些例子的最后一个变体,我们来考虑 C A , B \mathsf{C}_{A,B} CA,B C A , B \mathsf{C}^{A,B} CA,B f i b e r fiber fiber版本。可以用这个测试你是否真正理解了 C A , B \mathsf{C}_{A,B} CA,B,专家会告诉你这个对于学生看上去相当复杂,所以如果一开始不是那么顺利不要灰心。从一个给定的范畴 m a t h s f C mathsf{C} mathsfC开始,这次从范畴 C \mathsf{C} C中选择两个固定的态射 α : A → C \alpha:A\rightarrow C α:AC β : B → C \beta:B\rightarrow C β:BC,我们可以考虑范畴 C α , β \mathsf{C}_{\alpha,\beta} Cα,β

O b j ( C α , β ) = c o m m u t a t i v e   d i a g r a m s \mathrm{Obj}(\mathsf{C}_{\alpha,\beta})=commutative\ diagrams Obj(Cα,β)=commutative diagrams
在这里插入图片描述
这个是在范畴 C \mathsf{C} C中。

对应于commutative diagrams的态射则是
在这里插入图片描述
如果对于Example 3.9理解很透彻,那么这个例子看上去就tame。同样的可以构造镜像例子 C α , β \mathsf{C}^{\alpha,\beta} Cα,β,从有相同source的两个态射开始: α : C → A \alpha:C\rightarrow A α:CA β : C → B \beta:C\rightarrow B β:CB

这些例子大概看懂,范畴,元素,态射。先去定范畴是哪个?而范畴则是由范畴中的对象构成,态射也可以作为对象。

单词

  • psychologically: 心理上地;心理学地
  • irresistible: 不可遏止的;无法抵制的;极诱人的;忍不住想要的
  • shed: 去除;摆脱;使落下;使掉下;掉落(货物)
  • residual: 剩余的;残留的
  • mystery: 神秘的事物;不可理解之事;奥秘;神秘的人(或事物);陌生而有趣的人(或事物);神秘;不可思议
  • Pictorially: 绘画般地
  • lurking: 潜伏;潜水;潜伏的;潜行;潜藏
  • ambient: 周围环境的;周围的;产生轻松氛围的
  • contemplate: 考虑;思量;思忖;考虑接受(发生某事的可能性);深思熟虑;沉思;苦思冥想
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值