Algebra:Chapter 0 - 集合练习题

集合练习题

1.1. 找到有关罗素悖论(Russell’s paradox),然后理解它。

以下内容来自《百度百科》。百度百科上介绍的不是很好,知乎上有个高赞回答写的还不错,据说罗素悖论有解,如何解?

理发师悖论

在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
理发师悖论与罗素悖论是等价的:如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是城里不属于自身的那些集合,并且城里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。反过来的变换也是成立的。
“理发师悖论”是很容易解决的,解决的办法之一就是修正理发师的规矩,将他自己排除在规矩之外;可是严格的罗素悖论就不是这么容易解决的了。

书目悖论

一个图书馆编纂了一本书名词典,它列出这个图书馆里所有不列出自己书名的书。那么它列不列出自己的书名?这个悖论与理发师悖论基本一致。

影响

十九世纪下半叶,德国数学家康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。
1903年,一个震惊数学界的消息传出:集合论是有漏洞的。这就是英国数学家罗素提出的著名的罗素悖论。罗素的这条悖论使集合论产生了危机。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。德国的著名逻辑学家弗雷格在他的关于集合的基础理论完稿付印时,收到了罗素关于这一悖论的信。他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟。他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”
公理化集合论的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展。

1.2. 证明如果 ∼ \sim 是集合 S S S上的一个关系,那么在1.5节中定义的对应的簇 P ∼ \mathscr{P}_{\sim} P是集合 S S S的一个划分:就是说,它的元素是非空的,不相交的,并且它们的并是 S S S

虽然题目中没有明确说明,但是 ∼ \sim 说的应该是等价关系,如果要证明的话还是按照等价关系来证明。
我先捋以下,根据定义我们有 P ∼ = S / ∼ \mathscr{P}_{\sim}=\left. S \middle/ \sim \right. P=S/,现在要证明三个属性:

  • 它指的是 P ∼ \mathscr{P}_{\sim} P P ∼ \mathscr{P}_{\sim} P是一个集合族,它的元素也是集合。对于这个性质需要证明它的元素是非空的。
  • P ∼ \mathscr{P}_{\sim} P中任意两个元素拎出来,证明这两个集合的交为空集。
  • 最后要证明 P ∼ \mathscr{P}_{\sim} P中所有元素的并是 S S S

证明 P ∼ \mathscr{P}_{\sim} P中任意等价类不为空。
因为 ∼ \sim 是集合 S S S上的等价关系,根据等价关系的反身性,对于 ∀ a ∈ S \forall a \in S aS可以得到 a ∼ a a\sim a aa为真,所以 ∀ a ∈ S \forall a \in S aS所在的等价类 [ a ] ∼ [a]_{\sim} [a]至少有一个元素 a a a,所以 P ∼ \mathscr{P}_{\sim} P中任意等价类都不为空。
证明 P ∼ \mathscr{P}_{\sim} P中任意两个等价类都不相交。
这个采用反证法。
证明 P ∼ \mathscr{P}_{\sim} P所有元素的并和集合 S S S相等。
这个还是用证明两个集合相等的方法。

1.3. 给定集合 S S S上的一个划分 P \mathscr{P} P,问如何定义 S S S上的关系 ∼ \sim 使得 P \mathscr{P} P是对应的划分。

这个有点蛋疼啊,给定一个划分,问怎么构造一个等价关系,使得这个等价关系可以得到划分是 P \mathscr{P} P。现在是这个等价关系要满足定义中的三个性质。一个等价关系可以推出唯一的划分,但是一个划分是否唯一对应一个等价关系呢?应该不是的吧,一个划分可以对应多个等价关系。

1.4. 有多少种等价关系可以定义在集合 { 1 , 2 , 3 } \{1,2,3\} {1,2,3}上?

我觉得是有无数种。比如可以定义这样一个等价关系: { ( a , b ) ∈ S ∣ a + b < t , t > 7 } \{(a,b)\in S\mid a+b<t,t>7 \} {(a,b)Sa+b<t,t>7}。这样的等价关系有无数个。

1.5. 试给出一种关系,具有反身性和对称性但是没有传递性。如果你用这种关系去给一个集合定义划分会发生什么?(提示:第二个问题可以帮你回答第一个问题。)

1.6. 给实数集合 R \mathbb{R} R上定义一个关系 ∼ \sim a ∼ b ⟺ b − a ∈ Z a\sim b\Longleftrightarrow b-a\in\mathbb{Z} abbaZ。试证明这是一个等价关系,然后给 R / ∼ \left. \mathbb{R}\middle/\sim \right. R/找到一个“compelling”描述。同样的对平面 R × R \mathbb{R}\times\mathbb{R} R×R的关系 ≈ \approx ,其定义为 ( a 1 , a 2 ) ≈ ( b 1 , b 2 ) ⟺ b 1 − a 1 ∈ Z (a_{1},a_{2})\approx(b_{1},b_{2}) \Longleftrightarrow b_{1}-a_{1}\in \mathbb{Z} (a1,a2)(b1,b2)b1a1Z并且 b 2 − a 2 ∈ Z b_{2}-a_{2} \in \mathbb{Z} b2a2Z也回答相同的问题。

解读

不会做。

单词

  • compelling
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值