import pandas as pd
# 读取第一个表
df1 = pd.read_excel(r'C:\Users\wangkejun\Desktop\gogo.xlsx')
# 读取第二个表
df2 = pd.read_excel(r'C:\Users\wangkejun\Desktop\id5.xlsx')
# 读取第二个表并重命名site_product_id列为OrderItemId
df2 = pd.read_excel(r'C:\Users\wangkejun\Desktop\id5.xlsx').rename(columns={'site_product_id': 'OrderItemId'})
# 根据df2_split的所有OrderItemId_split在df1的OrderItemId列搜索相同的,然后取df1对应的产品数和订单数列数据
df2_split = df2.merge(df1[['OrderItemId', '产品数', '订单数']], left_on='OrderItemId', right_on='OrderItemId', how='left')
# 根据order_source_id、site_id和category分组,计算产品数和订单数之和
grouped_df = df2_split.groupby(['order_source_id', 'site_id', 'category']).agg({'产品数': 'sum', '订单数': 'sum'}).reset_index()
grouped_df.to_excel(r'C:\Users\wangkejun\Desktop\结果5.xlsx', index=False)
-
重命名第二个表格中的列名:
df2 = df2.rename(columns={'site_product_id': 'OrderItemId'})
-
合并两个表格,并根据共同的OrderItemId列进行匹配,并提取相应的产品数和订单数数据:
df2_split = df2.merge(df1[['OrderItemId', '产品数', '订单数']], left_on='OrderItemId', right_on='OrderItemId', how='left')
-
根据order_source_id、site_id和category列进行分组,并计算产品数和订单数之和:
grouped_df = df2_split.groupby(['order_source_id', 'site_id', 'category']).agg({'产品数': 'sum', '订单数': 'sum'}).reset_index()