使用Python和Pandas合并和分组数据的实例

该篇文章介绍了如何使用Python的pandas库读取两个Excel文件,通过合并表格并重命名列,然后根据特定列进行匹配,计算产品数量和订单总数,并将结果保存到新的Excel文件中。
摘要由CSDN通过智能技术生成
import pandas as pd

# 读取第一个表
df1 = pd.read_excel(r'C:\Users\wangkejun\Desktop\gogo.xlsx')

# 读取第二个表
df2 = pd.read_excel(r'C:\Users\wangkejun\Desktop\id5.xlsx')

# 读取第二个表并重命名site_product_id列为OrderItemId
df2 = pd.read_excel(r'C:\Users\wangkejun\Desktop\id5.xlsx').rename(columns={'site_product_id': 'OrderItemId'})


# 根据df2_split的所有OrderItemId_split在df1的OrderItemId列搜索相同的,然后取df1对应的产品数和订单数列数据
df2_split = df2.merge(df1[['OrderItemId', '产品数', '订单数']], left_on='OrderItemId', right_on='OrderItemId', how='left')

# 根据order_source_id、site_id和category分组,计算产品数和订单数之和
grouped_df = df2_split.groupby(['order_source_id', 'site_id', 'category']).agg({'产品数': 'sum', '订单数': 'sum'}).reset_index()

grouped_df.to_excel(r'C:\Users\wangkejun\Desktop\结果5.xlsx', index=False)
  1. 重命名第二个表格中的列名:

    • df2 = df2.rename(columns={'site_product_id': 'OrderItemId'})
  2. 合并两个表格,并根据共同的OrderItemId列进行匹配,并提取相应的产品数和订单数数据:

    • df2_split = df2.merge(df1[['OrderItemId', '产品数', '订单数']], left_on='OrderItemId', right_on='OrderItemId', how='left')
  3. 根据order_source_id、site_id和category列进行分组,并计算产品数和订单数之和:

    • grouped_df = df2_split.groupby(['order_source_id', 'site_id', 'category']).agg({'产品数': 'sum', '订单数': 'sum'}).reset_index()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值