具身智能(Embodied Intelligence)是一种强调智能体通过身体与物理环境交互来实现智能行为的研究方向。其核心在于将智能与物理存在相结合,通过感知、行动和环境反馈的循环来提升智能体的适应性和自主性。具身智能的研究方向主要包括以下几个方面:
- 具身感知
具身感知关注智能体如何通过多种传感器(如摄像头、激光雷达、力传感器等)获取环境信息,并将其转化为可理解的数据,以支持后续的决策和行动。例如:
视觉SLAM(同步定位与地图构建):用于机器人导航,如iRobot的Roomba扫地机器人通过视觉SLAM技术在家中自主导航和清洁。
3D场景理解:通过深度相机和激光雷达获取环境的三维信息,支持复杂任务执行,如Boston Dynamics的Spot机器人在复杂地形中导航。 - 具身交互
具身交互研究智能体如何通过身体与环境进行物理交互,包括抓取、操作和移动等任务。例如:
语言引导抓取:结合多模态大模型(MLMs),使智能体能够根据人类指令执行抓取操作。
触觉感知:通过力传感器和触觉反馈实现精细操作,如Shadow Robot Company的Dexterous Hand能够进行精细物体操作。 - 具身智能体
具身智能体需要具备多模态感知、交互和规划能力,能够自主地完成复杂任务。例如:
Robotic Transformer(RT)系列:谷歌开发的具身多模态基础模型,整合了多种感官模态和自然语言处理能力。
VoroNav系统:北京大学开发的基于大模型的零样本目标导航系统,能够在陌生环境中定位全新类别的物体。 - 仿真与迁移学习
通过虚拟仿真环境进行低成本训练和测试,并将学到的策略迁移到真实世界。例如:
Isaac Sim:NVIDIA的虚拟仿真平台,用于训练机器人在虚拟环境中执行复杂任务,然后将策略迁移到真实机器人。
Sim2Real技术:OpenAI的Dactyl项目使用该技术训练机械手解决魔方。 - 具身控制
具身控制通过与环境的交互学习,并使用奖励机制优化行为以获得最优策略。例如:
深度强化学习(DRL):用于处理高维数据并学习复杂的行为模式,如DeepGait结合基于模型的运动规划和强化学习,用于地形感知运动。
模仿学习:通过收集高质量的演示来最小化数据使用,如ALOHA方法用于人类演示。
具身智能的应用实例
智元机器人Figure 02:集成大模型(如GPT)的具身智能机器人,能够理解自然语言指令并执行复杂任务。
宇树科技的机器狗Unitree B2-W:高性能四足机器人,具备智能跟随和复杂地形适应能力,适用于救援、巡检和娱乐等场景。
BestMan平台:基于PyBullet的软硬件平台,支持具身智能机器人的开发与测试。
具身智能的研究不仅推动了机器人技术的发展,也为实现通用人工智能(AGI)提供了新的思路和方法。