as3——数字的近似

本文介绍了在ActionScript中如何使用Math.round(), Math.floor(), 和 Math.ceil()等方法进行数字的四舍五入及上下取整操作。同时,还提供了一个自定义方法NumberUtilities.round(),用于将数字精确地取整到特定的小数位或整数倍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用Math.round()可以4舍5入对数字取整。Math.floor()和Math.ceil()是对一个数向上或向下取整。自定义用NumberUtilities.round()的方法将一个数取整或取倍数。
    有许多的原因对数字取整。例如,当展示一个计算的结果时,可能只能展示这样的精确度。因为在ActionScript中所有的算术都是用浮点数执行,一些未预料到的浮点数字的计算结果必须取整。例如,实际上以个计算的结果可能是3.999999,而理论上应该是4.0。
    Math.round()返回一个最接近参数的一个整数:
trace(Math.round(204.499));  // Displays: 204
trace(Math.round(401.5));    // Displays: 402
    Math.floor()向下取整,而Math.ceil()向上取整:
trace(Math.floor(204.99));   // Displays: 204
trace(Math.ceil(401.01));    // Displays: 402
    针对取整的小数的位置:
    1.确定想要近似的小数点的位置。例如,如果想要保留两位小数,把90.337近似为90.34,那就是说需要精确的0.01。
    2.将数字除以第一步中的精确值(这时候就是0.01)。
    3.用Math.round()对第2步的计算结果取整。
    4.用第2步的那个数乘于第3步的计算结果。
    例如,对90.337保留两位小数,可以这样:
trace (Math.round(90.337 / .01) * .01);   // Displays: 9.34
    可以用相同的方法对一个数近似取整到另一个整数。
    例如,对92.5近似取整到5:
trace (Math.round(92.5 / 5)  *  5);   // Displays: 95
    对92.5近似取整到10:
trace (Math.round(92.5 / 10) * 10);   // Displays: 90
    在实际上,可以自定义一个NumberUtilites.round()方法实现这一功能。这个自定义方法有两个参数:
number
    需要近似取整的数字
roundToInterval
    近似取整的间隔。例如,如果要想近似到十分之一,用0.1作为间隔。要近似到6,用6做间隔。
    这个NumberUtilities类在ascb.util包中,因此想要是使用这个类首先要在文件中import来引入声明。看看一些例子:
trace(NumberUtilities.round(Math.PI));          // Displays: 3
trace(NumberUtilities.round(Math.PI, .01));     // Displays: 3.14
trace(NumberUtilities.round(Math.PI, .0001));   // Displays: 3.1416
trace(NumberUtilities.round(123.456, 1));       // Displays: 123
trace(NumberUtilities.round(123.456, 6));       // Displays: 126
trace(NumberUtilities.round(123.456, .01));     // Displays: 123.46
 
### 关于Float与Double的有效数字区别及其精度范围 #### 1. **有效数字** - `float` 类型通常具有大约 7 位十进制有效数字的精度[^1]。这意味着它可以精确表示最多 7 位的小数值。 - `double` 类型则可以提供更高的精度,其有效数字约为 15 至 16 位十进制数[^3]。 #### 2. **存储方式** - 浮点数无论是 `float` 还是 `double` 都采用 IEEE 754 标准来存储数据。具体来说,它们将数值分为三部分:符号位、指数位以及尾数(也称为有效数字)。对于 `float` 而言,总共有 32 位用于存储这些信息;而对于 `double` 则有 64 位[^2]。 #### 3. **精度范围** - 对于单精度浮点数 (`float`) 来说,由于它的尾数仅由 24 bit 表示,在转换到十进制时能够支持的最大整数部分长度接近 \(2^{24}\),这对应的大约就是前面提到过的 7 位有效数字[^4]。 - 双精度浮点数 (`double`) 使用了更多的比特位——确切地说是 53 bits 来表达尾数,因此它能更精准地捕捉更大的数值变化幅度,从而实现了高达 15~16 位的有效数字表现力。 ```python import struct def show_float_precision(value): packed = struct.pack('!f', value) # Pack as single precision (float) unpacked = struct.unpack('!I', packed)[0] binary_representation = bin(unpacked)[2:].zfill(32) sign_bit = binary_representation[0] exponent_bits = int(binary_representation[1:9], 2) - 127 fraction_bits = '1.' + ''.join([str(int(bit)) for bit in binary_representation[9:]]) decimal_value = (-1)**int(sign_bit) * float.fromhex(fraction_bits.hex()) * 2**(exponent_bits) return { "binary": binary_representation, "sign": sign_bit, "exponent": exponent_bits, "fraction": fraction_bits[:8]+"..."+fraction_bits[-1], "decimal": round(decimal_value, 7), } example_float = show_float_precision(0.1) print(example_float) ``` 上述代码展示了如何通过 Python 查看一个简单浮点数的实际内部结构,并计算出近似值以验证其有限精度特性。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值