谷歌发布大模型提示工程《Prompt Engineering》白皮书

系统阐述了提示工程(Prompt Engineering)的核心理念与最佳实践。

 白皮书深入探讨了多种提示技术,包括:零样本提示(Zero-Shot Prompting)、单样本提示(One-Shot Prompting)、少样本提示(Few-Shot Prompting)、思维链提示(Chain-of-Thought,CoT)、ReAct 提示以及代码提示。

参考:

Prompt Engineering | Kaggle

Kaggle: Your Machine Learning and Data Science Community

### 大模型提示工程技术中的Prompt模板示例及使用方法 #### 零样本提示 (Zero-Shot Prompting) 零样本提示涉及在不向大型语言模型提供任何示例或先前上下文的情况下生成响应。这种方法适合于需要对基本问题或一般主题快速回答的情境。 例如,在处理自然语言查询时,可以直接询问模型而不给出额外背景: ```plaintext What is the capital of France? ``` 这种简单的提问方式能够有效利用模型预训练的知识库来获取即时答案[^1]。 #### 基础结构化提示 (Structured Prompts) 为了更精确地引导模型输出特定格式的内容,可以采用带有明确指令和期望结果描述的基础结构化提示。这有助于提高回复的相关性和准确性。 下面是一个用于总结文档片段的例子: ```plaintext Summarize this text in one sentence: "Artificial intelligence (AI) has become an integral part of modern technology, influencing various industries from healthcare to finance." ``` 此命令清晰指出了所需操作(即摘要),并限定了长度要求(一句话)。这种方式使得模型更容易理解用户的意图,并据此调整其回应模式[^2]。 #### 条件分支提示 (Conditional Branching Prompts) 有时可能希望基于某些条件改变对话流程,则可以通过设计包含逻辑判断语句的复杂提示实现这一目标。这类提示允许创建更加动态灵活的人机交互体验。 这里有一个简单例子展示了如何根据用户输入决定下一步行动: ```plaintext If you want information about AI models, type 'models'. If you are interested in learning more about prompt engineering, type 'prompts'. ``` 上述提示不仅提供了两种不同路径供选择,还明确了每种选项对应的具体话题领域,从而增强了用户体验的质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值