为什么需要对相机标定?

相机标定是计算机视觉中的重要步骤,旨在逼近相机的映射函数,以恢复丢失的深度信息。它应用于单目视觉(如ADAS、SLAM)、双目/多目系统及RGB-D组合,涉及深度恢复、三维重建等任务。张正友标定法是最常见的标定方案,使用棋盘格等标志物进行多角度拍摄,然后通过计算完成标定。不同的标志物类型(棋盘格、圆点、AprilTag)有各自的优缺点,选择合适的标定方法对提高精度至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下内容来自系统教程如何搞定单目/鱼眼/双目/阵列 相机标定?

点击领取相机标定资料和代码

为什么需要对相机标定? 我们所处的世界是三维的,而相机拍摄的照片却是二维的,丢失了其中距离/深度的信息。从数学上可以简单理解为,相机本身类似一个映射函数,其将输入的场景,通过某种关系映射为一张RGB图片,即 file 而相机标定,就是使用数学模型和数学方法来近似逼近这一复杂映射函数的过程。标定后的相机即具有了描述这一过程的能力,从而可以用于各种计算机视觉的任务,如深度恢复、三维重建等,本质上都是对丢失的距离信息的恢复。 file 为什么说是逼近,因为我们永远也不可能百分之百得知一个真实的相机是如何投影图像的

相机标定到底在标什么? 机器视觉中,需要标定的应用场景可以简单分为如下几类:

单目视觉应用,如单帧测距、车载 ADAS 辅助、单目SLAM等 这类应用,我们通常需要相机自身的成像模型参数以及相机相对某个坐标系下的相对位姿。

比如下图简单场景,我们知道相机的朝向以及和地面的高度,就可以大致估计出相机某个像素对应物体的距离(物体高度已知或贴近地面)

<think>嗯,用户问的是关于相机标定需要写入哪些参数的问题。首先,我需要回忆一下相机标定的基本知识。相机标定主要是为了确定相机的内部参数和外部参数,这样可以将三维世界中的点映射到二维图像上。内部参数包括焦距、主点坐标、畸变系数这些,而外部参数则是相机的位置和方向,相对于某个世界坐标系。 用户可能是在进行计算机视觉项目,比如三维重建、机器人导航或者增强现实应用,这候准确的标定参数非常重要。他们可能遇到了图像畸变或者测量不准确的问题,所以想知道哪些参数必须写入相机或者配置文件里,以确保后续处理的正确性。 接下来要考虑用户可能的身份。可能是学生、研究人员或者工程师,对相机标定有一定了解,但需要更详细的参数列表和应用场景。他们可能已经使用过OpenCV、MATLAB的相机标定工具或者ROS中的相关包,但不确定具体哪些参数需要保存下来。 需要区分内部参数和外部参数,内部参数是相机固有的,而外部参数会根据相机的位置变化而变化。所以用户可能需要知道哪些参数是每次标定后都需要保存的,哪些是安装后固定不变的。例如,内部参数一旦标定,只要镜头不变,就可以重复使用,而外部参数可能需要根据不同的安装位置重新标定。 然后需要具体列出各个参数,比如焦距fx、fy,主点坐标cx、cy,这些是内参矩阵的重要组成部分。畸变系数也是关键,尤其是径向畸变和切向畸变参数,用于校正图像变形。另外,像传感器尺寸、像素尺寸、分辨率这些可能在某些应用中也需记录,尤其是当需要物理尺寸测量。 还要考虑不同相机的模型,比如是否使用鱼眼镜头,这候畸变模型可能不同,参数也会有所变化。用户可能需要知道标定工具输出的不同参数对应的模型,比如OpenCV中有不同的畸变模型,如plumb_bob或rational_polynomial。 此外,外部参数中的旋转矩阵和平移向量是否需要保存,可能取决于应用场景。如果是多相机系统,或者需要将相机坐标系转换到世界坐标系,这些参数就很重要。但如果是单相机应用,可能外部参数不需要长期保存,每次安装后重新标定即可。 还要注意参数的单位,比如焦距是以像素为单位还是物理单位(如毫米),这会影响后续的计算。确保用户了解参数的具体含义和单位,避免使用出现错误。 最后,可能需要提醒用户标定的注意事项,比如使用高质量的标定板、覆盖整个视野、不同角度和距离的图片采集,以及如何验证标定结果的准确性,比如重投影误差等。这些虽然不是参数本身,但影响标定参数的质量。 总结下来,需要明确列出需要写入相机标定参数,解释每个参数的意义,并给出应用场景和注意事项,帮助用户正确理解和使用这些参数。</think>相机标定参数可分为内参(Intrinsic Parameters)和外参(Extrinsic Parameters),以下是需要写入配置文件的核心参数及其技术细节: --- ### **一、内参矩阵(Intrinsic Matrix)** $$ K = \begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} $$ - **$f_x, f_y$**:x/y方向等效焦距(像素单位),反映传感器与镜头的比例关系 - **$c_x, c_y$**:主点坐标(图像中心偏移量),单位像素 - **$s$**:轴间倾斜因子(现代相机通常为0) --- ### **二、畸变系数(Distortion Coefficients)** #### 1. Brown-Conrady模型(OpenCV默认) ```python # OpenCV格式:[k1,k2,p1,p2,k3] dist_coeffs = [-0.25, 0.03, 0.001, -0.002, 0.15] ``` - **径向畸变**:$k_1, k_2, k_3$(桶形/枕形失真修正) - **切向畸变**:$p_1, p_2$(镜头安装误差修正) #### 2. Kannala-Brandt鱼眼模型 $$ \theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8) $$ 适用于广角镜头(如180° FOV) --- ### **三、外参矩阵(Extrinsic Parameters)** $$ \begin{cases} R &: 3\times3\ 旋转矩阵 \\ t &: 3\times1\ 平移向量 \end{cases} $$ 描述相机坐标系到世界坐标系的变换: $$ X_{world} = R \cdot X_{cam} + t $$ --- ### **四、传感器物理参数** | 参数名称 | 典型值 | 单位 | |-------------------|---------------------|--------| | 像素尺寸 | 3.45μm × 3.45μm | 毫米 | | 传感器尺寸 | 1/2.3" (6.17×4.55mm)| 毫米 | | 分辨率 | 1920×1080 | 像素 | --- ### **五、标定验证参数** - **重投影误差**:RMS误差应 < 0.5像素(优秀标定) - **有效标定区域**:例如`validPixROI = (x,y,width,height)` --- ### **六、特殊参数** 1. **双目相机**: - 基线距离 $B$(毫米) - 极线约束矩阵 $F$ 2. **RGB-D相机**: - 深度标定表(Depth LUT) - 深度-彩色对齐参数 --- ### **参数存储格式示例** ```yaml # YAML格式示例(ROS标准) image_width: 640 image_height: 480 camera_matrix: rows: 3 cols: 3 data: [615.3, 0, 319.5, 0, 615.8, 239.5, 0, 0, 1] distortion_model: plumb_bob distortion_coefficients: rows: 1 cols: 5 data: [-0.15, 0.02, 0.001, -0.003, 0.0] rectification_matrix: # 单目相机通常为单位矩阵 rows: 3 cols: 3 data: [1,0,0, 0,1,0, 0,0,1] projection_matrix: # 用于三维重建 rows: 3 cols: 4 data: [615.3,0,319.5,0, 0,615.8,239.5,0, 0,0,1,0] ``` --- ### **选择建议** - **工业检测**:必须记录内参+畸变参数 - **SLAM/VIO**:需额外保存IMU-相机外参 - **多相机系统**:需存储各相机间的外参变换链 - **热像仪**:需包含非均匀性校正(NUC)参数 标定参数的有效性需定期验证(推荐使用AprilTag标定板),当镜头对焦改变或机械冲击后必须重新标定
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值