香港大学最新工作,首个基于事件相机的双目视觉惯性里程计

以下内容来自从零开始机器人SLAM知识星球 每日更新内容

点击领取学习资料 → 机器人SLAM学习资料大礼包

#论文# ESVIO: Event-based Stereo Visual Inertial Odometry

论文地址:https://arxiv.org/abs/2212.13184

作者单位:香港大学机械工程系

异步低延迟事件流的事件相机为具有挑战性的情况下的状态估计提供了很大的机会。近年来,基于事件的视觉里程计研究得到了广泛的研究,但大多数是基于单目的,对双目事件视觉的研究很少。在本文中,我们提出了ESVIO,第一个基于事件的双目视觉惯性里程计,它利用了事件流、标准图像和惯性测量的互补优势。该方法实现了连续双目事件流之间的时间跟踪和匹配,从而获得了鲁棒状态估计。

此外,利用IMU和ESVIO后端将每个事件为参考时刻,设计了运动补偿方法来强调场景边缘。我们验证了ESIO(纯基于事件)和ESVIO(带有图像辅助的事件)在公共和自收集数据集上与其他基于图像和基于事件的基线方法相比具有更好的性能。此外,我们使用我们的方法在低光环境下执行机载四旋翼飞行。为了证明长期有效性,还进行了真实世界的大规模实验。这项工作是一个实时、准确的系统,旨在具有挑战性的环境下进行鲁棒的状态估计。

本文贡献如下:

1、为了在激烈运动和弱光场景下实现鲁棒状态估计,我们提出了第一个基于滑动窗口图优化的纯事件双目VIO (ESIO)。

2、针对连续双目事件流中基于事件的立体特征跟踪与匹配问题,设计了基于几何的时序事件特征跟踪方法和基于瞬时事件的立体特征匹配方法。这两种方法保证了状态估计的准确性和可靠性。

3、我们评估我们的ESVIO可以在公开可用的数据集上实现最先进的性

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值