开始学习基于事件相机的SLAM方法,先从VO开始,熟悉事件相机的数据和处理方式;
本课 主要是阅读
Event-based Visual Inertial Odometry
论文的记录
1. 摘要
事件相机通过检测像素的亮暗强度变化从而异步输出信号, 根据这一特性提出了一种新的视觉感知模型。由于这种事件相机的最高输出速率能达到(1MHZ), 因此该相机能够适应于高速运动和高动态范围的场景,而在这些场景中传统的相机无法使用。
在这篇文章中,我们提出第一种基于事件相机的VIO方法,这种方法是通过融合惯性测量单元,基于追踪算法,提出的一种精确地相机位姿估计。我们的算法是异步进行的,并以与摄像机速度成比例的速率提供测量更新。这个算法选择图像平面的特征,并在事件流中追踪这些特征的时空窗。
EKF与无结构化的测量模型融合了IMU的测量数据,而来自于滤波器输出的相机位姿可以用来初始化下一步追踪和丢弃失败的跟踪点。
我们成功的在Event-dataset众多有挑战性的场景中实现了本文的算法。
2. 相关技术介绍
-
本文的核心
核心一: 仅通过异步事件定义的特征,能够解决传统的VO问题;