DAVIS第二课:基于事件相机的视觉里程计

本文介绍了首款基于事件相机的视觉里程计(VIO)方法,利用事件相机的异步输出和IMU数据,解决高速动态场景下的位姿估计。通过EKF融合无结构测量模型,实现异步追踪并有效处理特征点。文章提出特征的时空窗追踪策略,解决了传统VO在事件处理中的难题,并展示了在挑战性场景中的成功应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开始学习基于事件相机的SLAM方法,先从VO开始,熟悉事件相机的数据和处理方式;

本课 主要是阅读Event-based Visual Inertial Odometry论文的记录

1. 摘要

事件相机通过检测像素的亮暗强度变化从而异步输出信号, 根据这一特性提出了一种新的视觉感知模型。由于这种事件相机的最高输出速率能达到(1MHZ), 因此该相机能够适应于高速运动和高动态范围的场景,而在这些场景中传统的相机无法使用。

在这篇文章中,我们提出第一种基于事件相机的VIO方法,这种方法是通过融合惯性测量单元,基于追踪算法,提出的一种精确地相机位姿估计。我们的算法是异步进行的,并以与摄像机速度成比例的速率提供测量更新。这个算法选择图像平面的特征,并在事件流中追踪这些特征的时空窗。

EKF与无结构化的测量模型融合了IMU的测量数据,而来自于滤波器输出的相机位姿可以用来初始化下一步追踪和丢弃失败的跟踪点。

我们成功的在Event-dataset众多有挑战性的场景中实现了本文的算法。

2. 相关技术介绍

  • 本文的核心

    核心一: 仅通过异步事件定义的特征,能够解决传统的VO问题;

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱发呆de白菜头

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值