【线性代数】俗说矩阵听课笔记

本文概述了线性代数中的关键概念,如基础解系、矩阵乘法规则、秩的计算、线性相关性、特征值与特征向量、正交化与相似对角化,以及正定二次型的性质。内容涵盖了向量空间、矩阵变换、二次型在几何上的应用等。
摘要由CSDN通过智能技术生成

基础解系的概念

线性方程组的解

6矩阵乘法

矩阵乘法无交换律,运算时需要区分左右

矩阵相当于一个映射,复合映射没有交换律。

8矩阵的性质

矩阵乘法具有结合律的本质原因是复合映射

10初等矩阵和初等行变换

初等行变换

12逆矩阵的求法

 

21行列式和矩阵秩Rank的等价刻画

子式

标准型

利用子式求解矩阵的rank

24零积秩不等式

齐次线性方程组的基础解系

rank的两个重要结论

¥25伴随矩阵的rank

奇异矩阵:行列式=0的矩阵

31线性相关,线性无关,拓展与证明

n个m维向量在n<=m时可能线性相关也可能线性无关,线性无关时可以构成某个m维空间的一组基。m不小于n时,秩小于n则线性相关。

n个m维向量在n>m时可一定线性相关。低维向量一定无法构成高维度空间的一组基。

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值