基础解系的概念
线性方程组的解
6矩阵乘法
矩阵乘法无交换律,运算时需要区分左右
矩阵相当于一个映射,复合映射没有交换律。
8矩阵的性质
矩阵乘法具有结合律的本质原因是复合映射
10初等矩阵和初等行变换
初等行变换
12逆矩阵的求法
21行列式和矩阵秩Rank的等价刻画
子式
标准型
利用子式求解矩阵的rank
24零积秩不等式
齐次线性方程组的基础解系
rank的两个重要结论
¥25伴随矩阵的rank
奇异矩阵:行列式=0的矩阵
31线性相关,线性无关,拓展与证明
n个m维向量在n<=m时可能线性相关也可能线性无关,线性无关时可以构成某个m维空间的一组基。m不小于n时,秩小于n则线性相关。
n个m维向量在n>m时可一定线性相关。低维向量一定无法构成高维度空间的一组基。
¥
32极大线性无关组
33向量组的等价
34线性空间基变换
待研究的内容:
1线性无关向量的正交化
2矩阵的特征值和特征向量
3相似矩阵和相似对角化
4二次型及标准二次型
¥35单位正交基向量
两个向量的数量积等于0,则称两者正交或者垂直
研究它的原因:正交基向量,单位正交基向量有非常良好的性质
36斯密特正交化
37特征值和特征向量
概念篇
计算篇
性质篇
引用篇
39特征值和特征向量的性质
40特征值和特征向量的计算例题
求特征值和特征向量的步骤
特征值和特征向量的关系
特征值和特征向量的性质
秩1方阵的特征值
幂等矩阵
Hamilton-Cayley定理
【补充】linear algebra and its applicationsCH4 vector spaces
4.1vector spaces and subspaces
4.2null spaces,column spaces, and linear transformation
4.3linear independent set:bases
4.4coordinate systems
4.5the dimension of a vector space
4.6rank
4.7change of basis
4.8applications to different equations
4.9applications to markov chains
41相似矩阵
相似矩阵的性质
42矩阵相似对角化
43实对称矩阵
实对称矩阵的定义
共轭:实部不变,虚部变负
复数矩阵运算性质
既然只需要线性无关的特征向量构成的矩阵就可以实现相似对角化,那为什么还要将他们正交化,构成新矩阵呢?
44二次型的基本概念
二次型定义
二次函数的一般形式->坐标平移:齐次二次函数
要得到实对称矩阵:折半拆分
45化二次型为标准型&合同对角化
为什么要把二次型化为标准型,它和相似对角化有什么联系?
合同变换的定义:
相似对角化的意义在于:将线性变换通过基变换变成简单的伸缩变换
那么,将二次型经过合同变换转化为标准型有什么意义呢?
合同变换的意义
正交矩阵的性质
正交矩阵的列向量都是单位向量,且两两相互正交
实对称矩阵总可以相似对角化,因此任意一个二次型也可以使用相似对角化的方法化为标准型:将歪斜的曲线和曲面转化为正的
46二次型和圆锥曲线
二次型和合同变换
将二次型对应的实对称矩阵进行合同-相似对角化,就可以化为对角阵,从而化为单位正交基向量下的标准方程!
example
总结:
二次型特征值的正负性影响二次型可以表示的曲面
47正定二次型
正定二次型是什么?如何判断二次型是否是正定二次型?