基础解系的概念
线性方程组的解
6矩阵乘法
矩阵乘法无交换律,运算时需要区分左右
矩阵相当于一个映射,复合映射没有交换律。
8矩阵的性质
矩阵乘法具有结合律的本质原因是复合映射
10初等矩阵和初等行变换
初等行变换
12逆矩阵的求法
21行列式和矩阵秩Rank的等价刻画
子式
标准型
利用子式求解矩阵的rank
24零积秩不等式
齐次线性方程组的基础解系
rank的两个重要结论
¥25伴随矩阵的rank
奇异矩阵:行列式=0的矩阵
31线性相关,线性无关,拓展与证明
n个m维向量在n<=m时可能线性相关也可能线性无关,线性无关时可以构成某个m维空间的一组基。m不小于n时,秩小于n则线性相关。
n个m维向量在n>m时可一定线性相关。低维向量一定无法构成高维度空间的一组基。