Transformer 模型中常见的特殊符号

Transformer 模型中常见的特殊符号

通过代码一起理解一下 Transformer 模型中常见的特殊符号,

示例代码,

special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'}

这段代码是定义了一个字典special_tokens,包含了以下几个关键字的token:

unk_token : 未知词token,用于替换不在词汇表中的单词。
sep_token: 分隔符token,用于分隔句子。
pad_token: 填充token,用于将序列padding到同一长度。
cls_token: 分类token,用于分类任务。
mask_token: 掩码token,用于掩码一些词语。
那么这些token的具体含义和作用是:

[UNK] 表示未登录词,也就是不在模型词汇表中的单词,会被替换成这个token。
[SEP] 用于分割句子,比如分隔两个句子。
[PAD] 是填充token,会用于把句子pad到相同长度。
[CLS] 是分类token,用于分类任务,会添加到句子开头,通过这个token的表示来进行分类。
[MASK] 是掩码token,用于掩码一些词,然后让模型预测被掩码的词。
这些都是 Transformer 模型中常见的特殊符号,在做NLP任务时需要加入这些特殊token,以表示一些特定的语义。

完结!

Transformer是一种基于注意力机制(attention mechanism)的神经网络模型,它在自然语言处理领域中表现出色,尤其是在机器翻译任务中。相比于传统的循环神经网络和卷积神经网络,Transformer具有以下优点: 1. 并行计算:Transformer可以并行计算,加快训练速度; 2. 长依赖问题:由于使用了注意力机制,Transformer可以更好地处理长依赖问题; 3. 模型效果:Transformer在机器翻译和其他自然语言处理任务中表现出色。 Transformer模型主要由Encoder和Decoder两个部分组成。 Encoder是由多个相同的层堆叠而成,每一层包含两个子层:多头注意力机制和全连接前馈神经网络。每个子层都有一个残差连接和一个层归一化(layer normalization)操作。Encoder的任务是将输入序列编码成一系列特征向量。 Decoder也由多个相同的层堆叠而成,每一层包含三个子层:多头注意力机制、编码器-解码器注意力机制和全连接前馈神经网络。每个子层也都有一个残差连接和一个层归一化操作。Decoder的任务是根据编码结果和一个特殊的标记符号,生成一个目标序列。 整个Transformer模型的训练过程可以采用迭代式的方式进行,每个迭代通过前向传播和反向传播进行参数更新。在训练过程中,模型的输出与实际值进行比较,通过最小化损失函数来优化模型参数。 总的来说,Transformer模型的出现,极大地推动了自然语言处理领域的发展,使得我们能够更好地处理自然语言文本,并实现更加智能化的应用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值