3d数学

在游戏开发中,需要使用到向量,三角函数之类的知识。先学会里面的概念,后续应用才会容易制作。

3d数学

1.笛卡尔坐标系(Cartesian)

2d坐标系:x,y

3d坐标系:x,y,z

在3d坐标系里面有左手坐标系和右手坐标系。这个可能对人来说有直观认知上的区别,其实是不相悖。

右手坐标系

sro8jH.jpg

左手坐标系

sro3ge.jpg

附带:

极坐标系(polar coordinates)是指在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个单位长度,通常规定角度取逆时针方向为正。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。

极坐标系用于定位和导航。极坐标通常被用于导航,作为旅行的目的地或方向可以作为从所考虑的物体的距离和角度。

2.三角学

这块的知识属于初等函数。初等函数包含的有:

幂函数、指数函数、对数函数、三角函数、反三角函数、有理运算(加减乘除,有理数次乘方、有理数次开放)、有限次函数复合。

1.直角三角形三角函数概念

sr7VT1.jpg

  • 对边 Opposite(opp) y
  • 邻边 Adjacent(adj) x
  • 斜边 Hypotenuse(hyp) r

勾股定理(毕达哥拉斯定理)

r = x 2 + y 2 r=\sqrt{x^2+y^2} r=x2+y2

5 = 3 2 + 4 2 5=\sqrt{3^2+4^2} 5=32+42

∠ A 为 θ ∠A 为\theta Aθ

余弦 cosine

邻边比斜边。

c o s ( θ ) = x r cos(\theta) = \frac{x}{r} cos(θ)=rx

rqrTSO.png

正弦 sine

对边比斜边。

s i n ( θ ) = y r sin(\theta) = \frac{y}{r} sin(θ)=ry

rqrIfK.png

正弦余弦背诵的时候,按照字母排序,x < y ,cos < sin。

割线 secant

sec ⁡ ( θ ) = 1 cos ⁡ ( θ ) \sec(\theta)=\frac{1}{\cos(\theta)} sec(θ)=cos(θ)1

sec ⁡ ( θ ) = r x \sec(\theta)=\frac{r}{x} sec(θ)=xr

余割 cosecant

csc ⁡ ( θ ) = 1 sin ⁡ ( θ ) \csc(\theta)=\frac{1}{\sin(\theta)} csc(θ)=sin(θ)1

csc ⁡ ( θ ) = r y \csc(\theta)=\frac{r}{y} csc(θ)=yr

切线 tangent

对边比邻边。

tan ⁡ ( θ ) = sin ⁡ ( θ ) cos ⁡ ( θ ) \tan(\theta)=\frac{\sin(\theta)}{\cos(\theta)} tan(θ)=cos(θ)sin(θ)

tan ⁡ ( θ ) = y x \tan(\theta) = \frac{y}{x} tan(θ)=xy

余切 cotangent

邻边比对边。

cot ⁡ ( θ ) = 1 tan ⁡ ( θ ) = cos ⁡ ( θ ) s i n ( θ ) \cot(\theta) = \frac{1}{\tan(\theta)}=\frac{\cos(\theta)}{sin(\theta)} cot(θ)=tan(θ)1=sin(θ)cos(θ)

cot ⁡ ( θ ) = x y \cot(\theta) = \frac{x}{y} cot(θ)=yx

反切线函数

反切线函数的反函数 arctangent

arctan ⁡ ( tan ⁡ ( θ ) ) = θ \arctan(\tan(\theta)) = \theta arctan(tan(θ))=θ

2.角度弧度

半径为1的园,全弧长为2 π \pi πr。

r a d i a n = a n g l e ∗ ( π / 180 ) radian=angle*(\pi/180) radian=angle(π/180)

a n g l e = r a d i a n ∗ ( 180 / π ) angle = radian*(180/\pi) angle=radian(180/π)

角度是两条线段的夹角,弧度是两条线段和园相交的点,在圆弧上走过的距离。

sr7ghV.jpg

角度使用360°,原因来自于日历。波斯日历就是360天。360能被整除的数字(不算自己和1)有22个数字。

3.三角恒等式

对称性恒等式

sin ⁡ ( − θ ) = − sin ⁡ ( θ ) , c o s ( − θ ) = c o s ( θ ) , tan ⁡ ( − θ ) = − t a n ( − θ ) , sin ⁡ ( π 2 − θ ) = cos ⁡ ( θ ) , cos ⁡ ( π 2 − θ ) = sin ⁡ ( θ ) , tan ⁡ ( π 2 − θ ) = cot ⁡ ( θ ) \sin(-\theta)=-\sin(\theta), cos(-\theta)=cos(\theta),\tan(-\theta)=-tan(-\theta),\\ \sin(\frac{\pi}{2}-\theta)=\cos(\theta), \cos(\frac{\pi}{2}-\theta)=\sin(\theta),\tan(\frac{\pi}{2}-\theta)=\cot(\theta) sin(θ)=sin(θ),cos(θ)=cos(θ),tan(θ)=tan(θ),sin(2πθ)=cos(θ),cos(2πθ)=sin(θ),tan(2πθ)=cot(θ)

毕达哥拉斯恒等式

这是由勾股定理推算出来的。

sin ⁡ 2 θ + cos ⁡ 2 θ = 1 , 1 + tan ⁡ 2 θ = sec ⁡ 2 θ , 1 + cot ⁡ 2 θ = csc ⁡ 2 θ \sin^2\theta+\cos^2\theta=1, 1+\tan^2\theta=\sec^2\theta, 1+\cot^2\theta=\csc^2\theta sin2θ+cos2θ=1,1+tan2θ=sec2θ,1+cot2θ=csc2θ

和或差恒等式

sin ⁡ ( a + b ) = sin ⁡ ( a ) cos ⁡ ( b ) + cos ⁡ ( a ) + sin ⁡ ( b ) sin ⁡ ( a − b ) = sin ⁡ ( a ) cos ⁡ ( b ) − cos ⁡ ( a ) + sin ⁡ ( b ) cos ⁡ ( a + b ) = cos ⁡ ( a ) cos ⁡ ( b ) − sin ⁡ ( a ) + sin ⁡ ( b ) cos ⁡ ( a − b ) = cos ⁡ ( a ) cos ⁡ ( b ) + sin ⁡ ( a ) + sin ⁡ ( b ) tan ⁡ ( a − b ) = tan ⁡ ( a ) + tan ⁡ ( b ) 1 − tan ⁡ ( a ) tan ⁡ ( b ) tan ⁡ ( a − b ) = tan ⁡ ( a ) − tan ⁡ ( b ) 1 + tan ⁡ ( a ) tan ⁡ ( b ) \sin(a+b)=\sin(a)\cos(b)+\cos(a)+\sin(b)\\ \sin(a-b)=\sin(a)\cos(b)-\cos(a)+\sin(b)\\ \cos(a+b)=\cos(a)\cos(b)-\sin(a)+\sin(b)\\ \cos(a-b)=\cos(a)\cos(b)+\sin(a)+\sin(b)\\ \tan(a-b)=\frac{\tan(a)+\tan(b)}{1-\tan(a)\tan(b)}\\ \tan(a-b)=\frac{\tan(a)-\tan(b)}{1+\tan(a)\tan(b)} sin(a+b)=sin(a)cos(b)+cos(a)+sin(b)sin(ab)=sin(a)cos(b)cos(a)+sin(b)cos(a+b)=cos(a)cos(b)sin(a)+sin(b)cos(ab)=cos(a)cos(b)+sin(a)+sin(b)tan(ab)=1tan(a)tan(b)tan(a)+tan(b)tan(ab)=1+tan(a)tan(b)tan(a)tan(b)

背诵的时候,只需要记住一半,其他的是符号相反。

等腰三角形恒等式

其实就是和或差恒等式公式里面a=b的情况下,推导出来的。

sin ⁡ ( 2 θ ) = 2 sin ⁡ ( θ ) cos ⁡ ( θ ) \sin(2\theta)=2\sin(\theta)\cos(\theta) sin(2θ)=2sin(θ)cos(θ)

在阅读Detour源码里面有这样的应用。里面将会读取一个sin cos的一半做乘法。

cos ⁡ ( 2 θ ) = cos ⁡ 2 ( θ ) − sin ⁡ 2 θ = 2 cos ⁡ 2 ( θ ) − 1 = 1 − 2 sin ⁡ 2 ( θ ) \cos(2\theta)=\cos^2(\theta)-\sin^2\theta=2\cos^2(\theta)-1=1-2\sin^2(\theta) cos(2θ)=cos2(θ)sin2θ=2cos2(θ)1=12sin2(θ)

tan ⁡ ( 2 θ ) = 2 tan ⁡ ( θ ) 1 − tan ⁡ 2 θ \tan(2\theta)=\frac{2\tan(\theta)}{1-\tan^2\theta} tan(2θ)=1tan2θ2tan(θ)

正弦、余弦定理

如果已知边长,已知角度,需要推算出未知边长度,就需要使用这个定理。而且是任意三角形。

  • 正弦定理

sin ⁡ ( A ) a = sin ⁡ ( B ) b = sin ⁡ ( C ) c \frac{\sin(A)}{a}=\frac{\sin(B)}{b}=\frac{\sin(C)}{c} asin(A)=bsin(B)=csin(C)

  • 余弦定理

a 2 = b 2 + c 2 − 2 b c cos ⁡ ( A ) b 2 = a 2 + c 2 − 2 a c cos ⁡ ( B ) c 2 = b 2 + b 2 − 2 a b cos ⁡ ( C ) a^2=b^2+c^2-2bc\cos(A)\\ b^2=a^2+c^2-2ac\cos(B)\\ c^2=b^2+b^2-2ab\cos(C) a2=b2+c22bccos(A)b2=a2+c22accos(B)c2=b2+b22abcos(C)

6kRlCD.png

3.向量

向量计算应用于游戏中来计算位置,里面和三角函数也有关系。

向量和标量不一样,

标量(scale)只表示数值大小;

向量(矢量、vector)包含方向和数值大小。

举例:

速度、位移是向量

速率、长度是标量

零向量是指的长度为0,无方向的向量。

1.加法

将两个向量拼接成平行四边形,对角向量就是加法的结果。两个相同的向量相加,等于将向量长度增加一倍。

u ⃗ + v ⃗ = a ⃗ \vec{u} + \vec{v} = \vec{a} u +v =a

snVdeS.png

2.减法

u向量-v向量,就是指的从u向量目的点指向v向量目标点

v ⃗ − u ⃗ = w ⃗ = a ⃗ \vec{v} - \vec{u} = \vec{w} = \vec{a} v u =w =a

snVUL8.png

3.向量与标量乘

向量与标量乘法,将向量按照某个长度缩放,一般用于单位向量向前行进、缩回多少距离。

4.获取长度

获取向量从开始到结束的距离。从向量得到标量。利用勾股定理,向量记录的就是直角三角形斜边在x,y轴上的投影长度,斜边长度就是x,y的平方和的开方。

数学公式里面向量长度使用双竖线引用。

∣ ∣ v ⃗ ∣ ∣ = a 2 + b 2 \left||\vec{v}\right||=\sqrt{a^2+b^2} v =a2+b2

5.normalized

归一化需要将向量长度计算出来,然后将向量在各个维度的分量都除以长度。这样就能得到一个单位向量。归一化用一条竖线。

v ⃗ n o r m = v ⃗ ∣ ∣ v ⃗ ∣ ∣ \vec{v}_{norm} = \frac{\vec{v}} {\left||\vec{v}\right||} v norm=v v

单位化的向量分量的几何意义

x = cos ⁡ ( θ ) x=\cos(\theta) x=cos(θ)

y = sin ⁡ ( θ ) y=\sin(\theta) y=sin(θ)

这个特性将会应用于计算位置。

6. Dot Product

cos ⁡ θ = u ⃗ ⋅ v ⃗ ∣ ∣ u ⃗ ∣ ∣ ∣ ∣ v ⃗ ∣ ∣ \cos\theta=\frac{\vec{u} \cdot \vec{v}} {\left||\vec{u}\right||\left||\vec{v}\right||} cosθ=u v u v

点乘能计算两向量的夹角的cos值。cos有一个特点,在取值±90°的值域都是>0。在游戏中,这种计算能很快判断一个怪物是否在玩家身后。这个函数不能判断左右,但是能判断前后。

7.cross produce

sin ⁡ θ = u ⃗ × v ⃗ ∣ ∣ u ⃗ ∣ ∣ ∣ ∣ v ⃗ ∣ ∣ \sin\theta=\frac{\vec{u} \times \vec{v}} {\left||\vec{u}\right||\left||\vec{v}\right||} sinθ=u v u ×v

叉乘用于算左右。sin有个特点,取值在0~179°都是>0。用找个特点能判定向量是在自己的左边还是右边。

叉乘需要有3个维度才有意义。

u ⃗ × v ⃗ = ∣ u ⃗ ∣ ∣ v ⃗ ∣ sin ⁡ ( θ ) n \vec{u}\times\vec{v}=\left|\vec{u}\right|\left|\vec{v}\right|\sin(\theta)n u ×v =u v sin(θ)n

u叉乘v之后结果是sin*u、v向量的分量。n就是垂直于u、v构成平面的垂直法线向量。

3D向量叉乘

[ x 1 y 1 z 1 ] × [ x 2 y 2 z 2 ] = [ y 1 z 2 − z 1 y 2 z 1 x 2 − x 1 z 2 x 1 y 2 − y 1 x 2 ] \left[\begin{matrix} x_1\\ y_1\\ z_1 \end{matrix}\right] \times \left[\begin{matrix} x_2\\ y_2\\ z_2 \end{matrix}\right] = \left[\begin{matrix} y_1z_2-z_1y_2\\ z_1x_2-x_1z_2\\ x_1y_2-y_1x_2 \end{matrix}\right] x1y1z1×x2y2z2=y1z2z1y2z1x2x1z2x1y2y1x2

2D向量叉乘

[ x 1 y 1 ] × [ x 2 y 2 ] = x 1 y 2 − x 2 y 1 \left[\begin{matrix} x_1\\ y_1 \end{matrix}\right] \times \left[\begin{matrix} x_2\\ y_2 \end{matrix}\right] = x_1y_2-x_2y_1 [x1y1]×[x2y2]=x1y2x2y1

8.获取角度

将向量转换成弧度,向量无需归一化。

∠ θ = arctan ⁡ ( y , z ) \angle\theta=\arctan(y,z) θ=arctan(y,z)

9.常用函数


// 将弧度转换成角度
float radian2angle(float radian) {
    return radian * (180.0f / mathfu::kPi);
}

// 将角度转换成弧度
float angle2radian(float angle) {
    return angle * (mathfu::kPi / 180.0f);
}

// 将向量转换成角度
float vector2angle(mathfu::Vector<float, 2> a) {
    return radian2angle(std::atan2(a.y, a.x));
}

// 角度转换成向量
void angle2vector(float angle, mathfu::Vector<float, 2>& a) {
    auto radian = angle2radian(angle);
    a.y = std::sin(radian);
    a.x = std::cos(radian);
}

// 按照角度,长度,转换一个位置
void movepos(float angle,mathfu::Vector<float,2>& rawPos, float len, mathfu::Vector<float, 2>& out) {
    mathfu::Vector<float, 2> dir;
    angle2vector(angle, dir);
    dir.x *= len;
    dir.y *= len;
    out = rawPos + dir;
}

// 输出一个向量
void outputvector(const char* tag, mathfu::Vector<float, 2>& a) {
    std::cout << tag << " "<< a.x << "," << a.y << "\n";
}

实例

1.计算围绕role的怪物

先检查是否和其他怪物重合
按照±小角度开始偏移尝试是否能站

##include "mathfu/vector.h"
##include "mathfu/constants.h"
##include <iostream>

float radian2angle(float radian) {
    return radian * (180.0f / mathfu::kPi);
}

float angle2radian(float angle) {
    return angle * (mathfu::kPi / 180.0f);
}

float vector2angle(mathfu::Vector<float, 2> a) {
    return std::atan2(a.y, a.x)*(180.0f / mathfu::kPi);
}

void angle2vector(float angle, mathfu::Vector<float, 2>& a) {
    auto radian = angle2radian(angle);
    a.y = std::sin(radian);
    a.x = std::cos(radian);
}

void outputvector(const char* tag, mathfu::Vector<float, 2>& a) {
    std::cout << tag << "=(" << a.x << "," << a.y << ")\n";
}

// rawBattleCircleFix posSelf: linmath.Vector3{X:11424.3, Y:-311.48605, Z:17336.395}, 
// posEnemy: linmath.Vector3{X:11330.254, Y:-311.48605, Z:17465.838},
// newPos: linmath.Vector3{X:11245.467, Y:-311.48605, Z:17601.525},
// angle: -32, e2sLen: 160.00067
// 测试怪物按照弧形排布在玩家周围
void test_monster_battle_cricle()
{
    float dst = 160.0f; // 怪物距离
    float bodyRadius = 80.0f;// 怪物的宽度

    mathfu::Vector<float, 2> monsterPos(11424.3f, 17336.395f);
    mathfu::Vector<float, 2> rolePos(11330.254f, 17465.838f);
    auto dir = monsterPos - rolePos;
    auto angle = vector2angle(dir) + 20.0f;

    mathfu::Vector<float, 2> finalDir;
    angle2vector(angle, finalDir);

    finalDir.x *= dst;
    finalDir.y *= dst;

    mathfu::Vector<float, 2> newPos = rolePos + finalDir;
    
    outputvector("monsterPos", monsterPos);
    outputvector("rolePos", rolePos);
    outputvector("newPos",newPos);
}

cmake定义文件

cmake_minimum_required (VERSION 3.2)
project(math_base)

IF (CMAKE_SYSTEM_NAME MATCHES "Windows")
    add_definitions(-DWIN32)
    add_definitions(-DWIN32_LEAN_AND_MEAN)
    add_definitions(-D_WINSOCK_DEPRECATED_NO_WARNINGS)
    add_definitions(-D_CRT_SECURE_NO_WARNINGS)
    add_definitions(-D_USE_MATH_DEFINES)
ENDIF (CMAKE_SYSTEM_NAME MATCHES "Windows")

include_directories( $ENV{MATHFU_PATH}/include )

file(GLOB_RECURSE all_SRC "src/*.cpp" 
    "src/*.hpp" "src/*.h" 
    "src/*.cc" )

add_executable(test_math ${all_SRC})

target_link_libraries(test_math)

计算的位置,在坐标系上的位置

rOkIH0.png

2.计算园外切线

利用三角函数来计算点对于圆的切线;

void test_fun_fix_circle()
{
    // 圆半径
    float radius = 8.0f;
    // 圆心位置
    mathfu::Vector<float, 2> circlePos(0, 0);
    // 园外一点
    mathfu::Vector<float, 2> checkPos(10, 12);
    // 园外点指向圆心向量
    mathfu::Vector<float, 2> l = circlePos - checkPos;

    // 计算距离
    auto len = l.Length();

    // 计算出园外点指向圆心向量角度
    float cos = radius / len;
    float radian = std::acos(cos);
    
    // 直角三角形,计算另一角度
    float offsetangle = 90 - radian2angle(radian);
    
    // 将园外点指向圆心向量归一化,将向量转换成角度
    auto dir = l.Normalized();
    auto oldAngle = vector2angle(l);

    // 将 园外点指向圆心向量角度 + 通过直角三角形方式计算出来的夹角
    // 这个夹角就切线方向
    auto finalAngle = oldAngle + offsetangle;

    // 将角度换算成为向量
    mathfu::Vector<float, 2> finalDir;
    angle2vector(finalAngle, finalDir);

    outputvector("finalDir", finalDir);

    // 计算出切线点离 园外点 的距离,将向量长度设置成这个距离
    auto al = std::sqrt(len * len - radius * radius);
    finalDir.x = finalDir.x * al;
    finalDir.y = finalDir.y * al;

    // 使用 园外点 + 偏移向量就能得到切线过圆边的点
    auto finalPos = checkPos + finalDir;

    outputvector("finalPos", finalPos);
}

效果:

si1XZQ.png

3.计算某个点是否为三角形内

原理在 b站 GAMES101-现代计算机图形学入门-闫令琪 38分钟处讲解了。

叉积是用于控制左右。如果获取的值域是正数左边,负数为右边。

利用的是,三角形三点按照顺时针的向量,以及p点的向量的叉乘永远是相同的象限的。


float cross_vector2(mathfu::Vector<float, 2>& v1, mathfu::Vector<float, 2>& v2)
{
	return v1.x * v2.y - v2.x * v1.y;
}

void test_triangle_inner()
{
	mathfu::Vector<float, 2> A(8.66992, 6.79278);
	mathfu::Vector<float, 2> B(4.96974, 2.1609);
	mathfu::Vector<float, 2> C(12.31686, 1.78822);
	mathfu::Vector<float, 2> P(8.98936, 4.07754);

	mathfu::Vector<float, 2> P2(11, 5);

	auto u = B - A;
	auto v = C - B;
	auto w = A - C;

	std::cout << "start check P\n";
	auto t = P - A;
	std::cout << cross_vector2(t, u) << "\n";
	t = P - B;
	std::cout << cross_vector2(t, v) << "\n";
	t = P - C;
	std::cout << cross_vector2(t, w) << "\n";


	std::cout << "start check P2\n";
	t = P2 - A;
	std::cout << cross_vector2(t, u) << "\n";
	t = P2 - B;
	std::cout << cross_vector2(t, v) << "\n";
	t = P2 - C;
	std::cout << cross_vector2(t, w) << "\n";
}

//output:
//start check P
//11.3947
//28.8183
//23.5922
//start check P2
//- 0.317775
//43.247
//20.8761
// 如果旋转方向相同,这些向量的sin值的符号都是一致的。
//

snVFIJ.png

4.计算矩形内的一点

原理和三角形检查一样。

先将一个矩形做偏移,旋转:

s2djk4.png

取两个点开始计算:

s2wm9A.png

void test_rect_inner()
{
    mathfu::Vector<float, 2> r1(-4, -5);
    mathfu::Vector<float, 2> r2(-1.401923789, -3.5);
    mathfu::Vector<float, 2> r3(-4.901923789, 2.562177826);
    mathfu::Vector<float, 2> r4(-7.5, 1.062177826);


    mathfu::Vector<float, 2> i(-4.88, -1.49);
    mathfu::Vector<float, 2> j(-8.26, -3.77);

    std::cout << "计算i点\n";
    auto t1 = r2 - r1;
    auto t2 = i - r1;
    std::cout << mathfu::Vector<float, 2>::DotProduct(t1,t2) << "\n";
    t1 = r3 - r2;
    t2 = i - r2;
    std::cout << mathfu::Vector<float, 2>::DotProduct(t1, t2) << "\n";
    t1 = r4 - r3;
    t2 = i - r3;
    std::cout << mathfu::Vector<float, 2>::DotProduct(t1, t2) << "\n";
    t1 = r1 - r4;
    t2 = i - r4;
    std::cout << mathfu::Vector<float, 2>::DotProduct(t1, t2) << "\n";

    std::cout << "计算j点\n";

    t1 = r2 - r1;
    t2 = j - r1;
    std::cout << mathfu::Vector<float, 2>::DotProduct(t1, t2) << "\n";
    t1 = r3 - r2;
    t2 = j - r2;
    std::cout << mathfu::Vector<float, 2>::DotProduct(t1, t2) << "\n";
    t1 = r4 - r3;
    t2 = j - r3;
    std::cout << mathfu::Vector<float, 2>::DotProduct(t1, t2) << "\n";
    t1 = r1 - r4;
    t2 = j - r4;
    std::cout << mathfu::Vector<float, 2>::DotProduct(t1, t2) << "\n";
}

5.计算两个角度相差

这段代码是复制unreal engine4里面的。


template< class T >
static inline T Sign(const T A)
{
    return (A > (T)0) ? (T)1 : ((A < (T)0) ? (T)-1 : (T)0);
}

void WindRelativeAnglesDegrees(float InAngle0, float& InOutAngle1)
{
    const float Diff = InAngle0 - InOutAngle1;
    const float AbsDiff = std::abs(Diff);
    if (AbsDiff > 180.0f)
    {
        InOutAngle1 += 360.0f * Sign(Diff) * std::floor((AbsDiff / 360.0f) + 0.5f);
    }
}

void test_windRelativeAngle()
{
    float a0 = 10;
    float a1 = -10;
    
    WindRelativeAnglesDegrees(a0, a1);
    std::cout << a0 - a1 << "\n";

    a0 = 10;
    a1 = 350;
    WindRelativeAnglesDegrees(a0, a1);
    std::cout << a0 - a1 << "\n";

    a0 = 370;
    a1 = 20;
    WindRelativeAnglesDegrees(a0, a1);
    std::cout << a0 - a1 << "\n";

}

大意就是将a0,a1两个角度(无论角度是不是±180°区间)计算了之后,再次做减法,计算出角度为夹角度数,且夹角会保持在±180°之内。

6.角度格式化

// Utility to ensure angle is between +/- 180 degrees by unwinding.

// 将度数限制在±180°
func UnwindDegrees(A float64) (R float64) {
    for A > 180.0 {
        A -= 360.0
    }
    for A < -180.0 {
        A += 360.0
    }
    R = A
    return
}

4.矩阵

1.概念

∣ 1 2 3 4 5 6 7 8 9 ∣ (A) \left|\begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix}\right| \tag{A} 147258369(A)

矩阵是按照行列方式排列的数字。是线性代数里面中重要的数学概念。

描述矩阵一般都是说

r × c r \times c r×c

的矩阵。r是rows行(横着的条目算1个),c是column(竖着的条目算1个)

方阵就是行和列数目都是相同的。在3d运算中经常使用这种方阵

单位矩阵,对角线都是1,其余都是0。

∣ 1 0 0 0 1 0 0 0 1 ∣ (M) \left|\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix}\right| \tag{M} 100010001(M)

书写的时候,矩阵都是写成大写。M,A,R。手写的时候,矩阵的括号其实要写成圆括号(),印刷体中都是[]表示。

向量转换成矩阵可以成为 行矩阵、列矩阵。

2.矩阵运算

  • 单位矩阵

主对角线数字都为1,其他位置都为0。

1.转置

∣ 1 2 3 ∣ (M) \left| \begin{matrix} 1 \\ 2 \\ 3 \end{matrix}\right|\tag{M} 123(M)

∣ 1 2 3 ∣ (A) \left| \begin{matrix} 1 & 2 & 3\\ \end{matrix} \tag{A}\right| 123(A)

记作:

M t = A M^t=A Mt=A

2.矩阵与标量乘

M ∗ k = k ∗ ∣ m 11 m 12 m 13 m 21 m 22 m 23 m 31 m 32 m 33 ∣ = k ∣ k ∗ m 11 k ∗ m 12 k ∗ m 13 k ∗ m 21 k ∗ m 22 k ∗ m 23 k ∗ m 31 k ∗ m 32 k ∗ m 33 ∣ M*k= k *\left| \begin{matrix} m11 & m12 & m13\\ m21 & m22 & m23\\ m31 & m32 & m33\\ \end{matrix} \right| = k \left| \begin{matrix} k*m11 & k*m12 & k*m13\\ k*m21 & k*m22 & k*m23\\ k*m31 & k*m32 & k*m33\\ \end{matrix} \right| Mk=km11m21m31m12m22m32m13m23m33=kkm11km21km31km12km22km32km13km23km33

3.矩阵乘法

公式定义:

( A B ) i j = ∑ k = 1 p a i 1 b 1 j + a i 2 b 2 j + . . . + a i p b p j (AB)_{ij}=\sum_{k=1}^p a_{i1}b_{1j}+a_{i2}b_{2j}+...+a_{ip}b_{pj} (AB)ij=k=1pai1b1j+ai2b2j+...+aipbpj

公式分解:

A ∗ B = ∣ a 11 a 12 a 13 a 21 a 22 a 23 ∣ ∗ ∣ b 11 b 12 b 21 b 22 b 31 b 32 ∣ = ∣ a 11 b 11 + a 12 b 21 + a 13 b 31 a 11 b 21 + a 12 b 22 + a 13 b 23 a 21 b 11 + a 22 + b 21 + a 23 b 31 a 21 b 12 + a 22 b 22 + a 23 b 32 ∣ A*B= \left| \begin{matrix} a11 & a12 & a13\\ a21 & a22 & a23\\ \end{matrix} \right| * \left| \begin{matrix} b11 & b12 \\ b21 & b22 \\ b31 & b32 \\ \end{matrix} \right|=\left| \begin{matrix} a11b11+a12b21+a13b31 & a11b21+ a12b22+a13b23\\ a21b11+a22+b21+a23b31 & a21b12+a22b22+a23b32\\ \end{matrix} \right| AB=a11a21a12a22a13a23b11b21b31b12b22b32=a11b11+a12b21+a13b31a21b11+a22+b21+a23b31a11b21+a12b22+a13b23a21b12+a22b22+a23b32

A ∗ B = C A*B=C AB=C

1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。

2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。

3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。

在线性代数课程中,宋老师的7字口诀:

宋老师七字口诀:

A 3 × 4 B 4 × 5 A_{3 \times 4} B_{4 \times 5} A3×4B4×5

中间相等,取两头。

其实就是罗列矩阵的下标数字:

3,4,4,5

中间数字: 4,4相等,就能乘;

取两头: 3,5 这就是结果的矩阵的形状。

wps矩阵计算

使用矩阵来做位移,旋转,缩放操作:

sBTkV0.png

坐标系上的位置:

sBoz8g.png

4.克罗内克积(Kronecker Product)

克罗内克积是两个任意大小的矩阵间的运算,符号记作 。克罗内克积也被称为直积或张量积.以德国数学家利奥波德·克罗内克命名。

∣ a 11 a 12 a 21 a 22 ∣ ⨂ ∣ b 11 b 12 b 12 b 22 ∣ = ∣ a 11 b 11 a 11 b 12 a 12 b 11 a 12 b 12 a 11 b 21 a 11 b 22 a 12 b 21 a 12 b 22 a 21 b 11 a 11 b 12 a 22 b 21 a 22 b 22 a 21 b 21 a 21 b 22 a 22 b 21 a 22 b 22 ∣ \left| \begin{matrix} a11 & a12 \\ a21 & a22 \\ \end{matrix} \right| \bigotimes \left| \begin{matrix} b11 & b12 \\ b12 & b22 \\ \end{matrix} \right| = \left| \begin{matrix} a11b11 & a11b12 & a12b11 & a12b12 \\ a11b21 & a11b22 & a12b21 & a12b22 \\ a21b11 & a11b12 & a22b21 & a22b22 \\ a21b21 & a21b22 & a22b21 & a22b22 \\ \end{matrix} \right| a11a21a12a22b11b12b12b22=a11b11a11b21a21b11a21b21a11b12a11b22a11b12a21b22a12b11a12b21a22b21a22b21a12b12a12b22a22b22a22b22

6.欧拉角

先使用左手坐标系。

摆上一个飞机,y轴指天,x轴右,z轴向前。

  1. 飞机围绕着y轴旋转,叫做偏离航向(heading),偏航角(Yaw),航向角(Heading Angle);
  2. 飞机围绕着x轴旋转,叫做俯仰(pitch)调整,俯仰角(Pitch),偏斜角(Angle of Declination);
  3. 飞机围绕着z轴旋转,叫做滚转(bank)调整,翻滚角(Roll);

4.万向节死锁

2.欧拉恒等式

我还没有理解到这个意义。

cos ⁡ φ + i sin ⁡ φ = e i φ \cos\varphi+i\sin\varphi=e^{i\varphi} cosφ+isinφ=eiφ

φ = π \varphi=\pi φ=π

推导

e i π + 1 = 0 e^{i\pi}+1=0 eiπ+1=0

5.四元数

1.概述

四元数是1843年发明的。爱尔兰数学家哈密顿(William Rowan Hamilton,1805-1865)。

四元数运算在电动力学与广义相对论中有广泛的应用。四元数可以用来取代张量表示。有时候采用带有复数元素之四元数会比较容易,导得结果不为除法代数之形式。然而亦可结合共轭运算以达到相同的运算结果。

从概念上来看,就是在数学里面定义对于-1开方最后获取的值。

i = − 1 i=\sqrt{-1} i=1

复数是对实数集合的一种扩展。

在游戏开发应用里面,四元数用于做旋转计算。所以最好先将矩阵搞清楚。复数已经是一种数学工具了,在实际世界里面不能表示什么意义。

四元数不是专门给3D图形学设计的,但是能用在3D图形学里面:

  • [3D相机控制]
  • 压缩存储
  • 平滑3D插值

复数定义

z = a + b ∗ i z=a+b*i z=a+bi

a是实部,b是虚部;

复数与标量相乘、相除

k ∗ Z 1 = k ∗ ( a + b i ) = k ∗ a + ( k ∗ b ) ∗ i k*Z_{1}=k*(a+bi)=k*a+(k*b)*i kZ1=k(a+bi)=ka+(kb)i

复数加减

Z 1 = ( a + b ∗ i ) Z_{1}=(a+b*i) Z1=(a+bi)

Z 2 = ( c + d ∗ i ) Z_{2}=(c+d*i) Z2=(c+di)

Z 1 + Z 2 = ( a + b ∗ i ) + ( c + d ∗ i ) = ( ( a + c ) + ( b + d ) ∗ i ) Z_{1}+Z_{2}=(a+b*i)+(c+d*i)=((a+c)+(b+d)*i) Z1+Z2=(a+bi)+(c+di)=((a+c)+(b+d)i)

Z 1 − Z 2 = ( a + b i ) − ( c + d i ) = ( a − c ) + ( b − d ) i Z_{1}-Z_{2}=(a+bi)-(c+di)=(a-c)+(b-d)i Z1Z2=(a+bi)(c+di)=(ac)+(bd)i

复数加法恒等元

复数恒等元

( 0 + 0 ∗ i ) (0+0*i) (0+0i)

复数除法

Z 1 / Z 2 = ( a + b ∗ i ) ( c + d ∗ i ) Z_{1}/Z_{2}=\frac{(a+b*i)}{(c+d*i)} Z1/Z2=(c+di)(a+bi)

推算的时候,需要分子和分母都乘上分母的共轭复数。

共轭(Conjugate)

两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number)。(当虚部不等于0时也叫共轭虚数)复数z的共轭复数记作 (z上加一横,英文中可读作Conjugate z,z conjugate or z bar),有时也可表示为

Z ∗ = Z ‾ Z^*=\overline{Z} Z=Z

Z = ( a + b i ) Z=(a+bi) Z=(a+bi)

Z ‾ = ( a − b i ) \overline{Z}=(a-bi) Z=(abi)

计算负数的模

∣ ∣ p ∣ ∣ = p p ‾ \left||p\right||=\sqrt{p\overline{p}} p=pp

中划线

下划线 ‾ \underline{\text{下划线}} 下划线

上划线 ‾ \overline{\text{上划线}} 上划线

参考

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值