【Unity编程】欧拉角与万向节死锁(图文版)

万向节死锁(Gimbal Lock)问题

上文中曾经说过,欧拉旋转的顺规和轴向定义,自然造就了“万向节死锁”问题。本文主要来探索它自然形成的原因。

陀螺仪

首先,我们来了解Gimbal 究竟是个什么玩意儿。下面来自维基百科中关于Gimbal的一段引述:


平衡环架(英语:Gimbal)为一具有枢纽的装置,使得一物体能以单一轴旋转。由彼此垂直的枢纽轴所组成的一组三只平衡环架,则可使架在最内的环架的物体维持旋转轴不变,而应用在船上的陀螺仪、罗盘、饮料杯架等用途上,而不受船体因波浪上下震动、船身转向的影响。


Gimbal

上图就是一个Gimbal装置了,它是一个陀螺仪。中间有一根竖轴,穿过一个金属圆盘。金属圆盘称为转子,竖轴称为旋转轴。转子用金属制成,应该是了增加质量,从而增大惯性。竖轴外侧是三层嵌套的圆环,它们互相交叉,带来了三个方向自由度的旋转。
看着不停转来转去,有点晕,接下来看两个静态的。这两张图来自百度百科。

陀螺仪中文注释: 陀螺仪

其中Gimbal只代表陀螺仪装置中的平衡环,显然维基百科上将它解释成“平衡环架”更为合理。

Pitch、Yaw、Roll

在解释陀螺仪的工作原理之前,我先介绍一些转动的术语。在飞行器的航行中,进行XYZ三个方向旋转的旋转有专业的术语,见下图:

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 166
    点赞
  • 438
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 37
    评论
### 回答1: Unity 中的四元数和欧拉角都是用来表示物体的旋转的数学概念。 四元数是一种复数形式,用来表示三维空间中的旋转。在 Unity 中,四元数使用 Quaternion 类来表示。四元数具有几何意义,并且可以避免表示旋转的浮点精度误差。 欧拉角是三个欧拉角旋转序列,用来表示三维空间中的旋转。在 Unity 中,欧拉角使用 Euler 类来表示。欧拉角的优点在于易于理解,但缺点在于容易发生万向节锁(Gimbal lock),并且还存在浮点精度误差。 总的来说,两者都可以用来表示物体的旋转,但是四元数在精度和几何意义上更为优秀。因此,一般情况下建议使用四元数来表示物体的旋转。 ### 回答2: Unity中的四元数(Quaternion)和欧拉角(Euler Angles)是描述游戏物体旋转的两种常用方法。 四元数是一种复数扩展的概念,可以用来表示三维空间中的旋转。在Unity中,四元数由四个浮点数(x、y、z、w)表示,它们代表了旋转轴的三个分量以及旋转角度。相比欧拉角,四元数具有更简洁和高效的表示方式,并且可以避免万向节锁(Gimbal Lock)的问题。 欧拉角是将旋转分解为绕X、Y和Z轴的三个独立旋转角度的方法。在Unity中,欧拉角可以通过三个浮点数(pitch,yaw,roll)来表示,它们代表了绕X、Y和Z轴旋转的角度。但是使用欧拉角有时会遇到万向节锁问题,即当两个轴的旋转角度一样时,会导致旋转轴的丧失,影响旋转的自由度。 在Unity中,四元数常用于旋转的插值计算,比如使用Lerp函数进行平滑的旋转过渡。而欧拉角则常用于编辑器中的输入和操作,因为欧拉角更容易理解和控制。 总而言之,四元数和欧拉角都是描述旋转的方法,而四元数在性能和数学上更加高效和精确,而欧拉角则更易于理解和操作。在使用Unity进行旋转计算时,根据具体的需求和场景选择合适的方法,可以更好地控制物体的旋转效果。 ### 回答3: Unity中的四元数(Quaternion)和欧拉角(Euler Angles)都是用来表示物体在三维空间中的旋转的方法。 四元数是一种复数形式的表示方法,由一个实数部分(标量)和三个虚数部分(向量)组成。在Unity中,四元数可以使用Quaternion类来表示和操作。四元数可以通过简单的乘法操作和单位长度约束来计算和表示物体的旋转。它具有消除万向锁和插值旋转等优点,被广泛用于游戏和图形学领域。 欧拉角是一种以旋转顺序的三个角度来描述物体旋转的方法。通常使用欧拉角顺序(Yaw、Pitch、Roll)来表示物体的旋转,也就是绕Y轴旋转的偏航角、绕X轴旋转的俯仰角和绕Z轴旋转的翻滚角。在Unity中,欧拉角可以通过Transform组件的eulerAngles属性来获取和设置。然而,欧拉角旋转过程中存在万向锁问题,会导致无法准确表示物体的旋转。 在使用四元数和欧拉角时,我们需要根据具体的需求来选择合适的方法。如果需要精确的旋转表示并进行旋转插值操作,建议使用四元数来表示物体的旋转。而欧拉角则更适合用于方便的人类可读的表示和操作。在Unity中,可以通过Quaternion转换为欧拉角,或者通过欧拉角转换为四元数来进行两者之间的转换。 总结来说,四元数适用于精确的旋转表示和插值计算,而欧拉角则适用于直观的表示和操作。在实际开发中,我们可以根据具体需求和场景来选择使用四元数还是欧拉角来表示和操作物体的旋转

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 37
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AndrewFan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值