Octopus:2B 参数语言模型即可媲美 GPT-4 的函数调用性能

本文介绍了斯坦福大学开发的Octopus-V2模型,通过将AI代理的函数选择问题转化为分类问题,显著提高了移动设备上的功能调用速度和准确性。该模型在隐私保护和性能上超越了现有云端解决方案,为Android系统管理和设备协同工作提供了新途径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近年来,大语言模型在 PC、智能手机和可穿戴设备的操作系统中应用逐渐成为趋势。 例如,MultiOn (Garg, 2024) 和 Adept AI (Luan, 2024) 等 AI 助理工具,以及 Rabbit R1 (Lyu, 2024) 和 Humane AI Pin (Chaudhri, 2024) 等 AI 消费产品在消费者市场正获得关注。这些产品利用语言模型将人类自然语言转换为可操作的命令,为用户提供便捷的操作体验。然而,现有的基于云端大模型的解决方案存在隐私泄露风险、推理成本高、网络连接要求高等问题。虽然一些研究者提出基于开源模型的函数调用方法。 然而,这些方法在推理任务和能耗方面表现不佳,无法满足实际应用的需求。

为此斯坦福大学采用了一种独特的功能性标记策略,基于谷歌Gemini 2B模型开发了Octopus-V2模型,专为Android API的功能调用定制,超越了基于RAG的方法,特别适用于边缘计算设备。比Llama7B + RAG方案快36倍,性能优于 GPT-4,延迟时间小于 1 秒。它能够在移动设备上直接运行,支持广泛的应用场景,从而推动Android系统管理和设备间协同工作的新方式。其快速和高效的推理能力,特别适合需要高性能和精确功能调用的场景,如智能家居控制、移动应用开发等。

这篇论文的核心在于,传统实现AI 代理的方法是先从所有可用函数中检索与用户查询最匹配的函数,然后再生成函数参数。这种方法的缺点是需要处理大量的文本信息ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灿烂李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值