因果推理0-因果律武器
本文旨在整理本人在学习途中的思路,可能会有些逻辑混乱或疏漏之处,望大家勘误。当然如果能引发读者对因果方向的兴趣那将不胜荣幸。
幸存者偏差
在开始前,我想先举一个例子,希望这个例子可以引出我们后续的思考。
假如在一场战争中,你是一名飞机工程师,你的上司扔给你一堆飞行员开回来的战损机,并要求你改进飞机的模型。
你根据战损机的信息统计出了弹孔模型,如图1所示。红色的是弹孔位置,统计发现机翼上的弹痕最多,机尾和引擎最少,你的同行凭此判断应加强机翼的防御,并减轻机尾和引擎的防御,你是否赞同?

想必聪明的你已经有了正确的答案,没错,你的同行可能是个卧底。
因为你知道,这些战损机是因为只被打中了机翼才能飞回来,而被打中引擎的飞机根本飞不回来。
这就是统计学中著名的幸存者偏差
,是一种选择偏差。
辛普森悖论
假如你是一名药剂师,现在有两种药以及其实验数据,如图所示,treatment表示处理,及使用A药治疗和使用B药治疗,Total中分母表示病人总数目,分子表示治愈的病人数目。
现在你需要据此推理出哪一种药的效果更好,请问你会如何作答?

相信聪明的你会不假思索的认为B的药效要更好一些,因为我也是这样认为的。
但如果我们给数据再加上一个条件(condition),如图所示,将病人分为病情较轻和病情较重两部分。

整体看来B效果更好,但加上条件后,看每个子组,A效果似乎更好一些。那么究竟那种药物是更好的呢?
这就是统计学中的辛普森悖论
, 这个悖论曾经困扰了统计学家数十年,他揭示了统计学中”相关性“(association)的脆弱。
因果
鉴于许多现实问题的出现,我们需要一个更精确的的评判标准,这或许就是因果推理存在的价值。那么究竟什么是因果呢?
因果推理(causal inference)指推断出任意处理(treatment)或干预(intervention)等的效果(effect)。
比如,公鸡打鸣是否会造成太阳升起?需要打鸣几声才能造成太阳的生气?地面潮湿是否会造成天要下雨?要多潮湿才会下雨?这些都是因果推理要解决的问题。
好了,我想第一章就到这里结束了。这一章我们提了两个统计学中有趣的问题,最后给出了关于因果的定义:推断出任意处理或干预等的效果。没有涉及到什么公式,但希望能引起大家的思考。
最后,我希望能以一张图片作为本章的结尾。这是因果方向一张很著名的图,被称为因果之梯,在后续我的学习中会频繁的涉及到这里面的知识。
