前言
前言吹吹水,玩过最近很火的“真人版切水果”游戏吗??
直接上图(引侵删):
那它是如何实现识别游戏用户肢体的呢?今天我们聊一下人体肢体实时识别技术。
环境准备
在开始之前,我们需要确保我们的开发环境中已经安装了必要的库。本文使用的是Python编程语言,以及其他两个主要库:OpenCV和MediaPipe。您可以通过以下命令安装这两个库:
pip install opencv-python mediapipe
代码实现
以下是使用OpenCV和MediaPipe实现实时人体姿态识别的核心代码:
import cv2
import mediapipe as mp
# 初始化MediaPipe的Pose模型
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
# 初始化MediaPipe的绘图工具
mp_draw = mp.solutions.drawing_utils
# 打开摄像头
cap = cv2.VideoCapture(0)
while cap.isOpened():
# 读取摄像头帧
success, image = cap.read()
if not success:
print("无法读取摄像头帧。请检查摄像头是否正常工作。")
break
# 将BGR图像转换为RGB
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 进行人姿态检测
results = pose.process(image_rgb)
# 将RGB图像转换回BGR以供OpenCV使用
image = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR)
# 如果检测到人体姿态,则绘制关键点
if results.pose_landmarks:
mp_draw.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
# 显示结果图像
cv2.imshow('MediaPipe Pose', image)
# 按下'q'键退出循环
if cv2.waitKey(10) & 0xFF == ord('q'):
break
# 释放摄像头并关闭所有OpenCV窗口
cap.release()
cv2.destroyAllWindows()
代码解释
- 导入库:首先,我们导入了OpenCV和MediaPipe库,这两个库是实现这一功能的基础。
- 初始化Pose模型:通过
mp_pose.Pose()
,我们创建了一个Pose模型实例,设置min_detection_confidence
和min_tracking_confidence
参数以控制检测和追踪的精度。 - 初始化绘图工具:使用
mp.solutions.drawing_utils
来方便地绘制检测到的人体姿态关键点。 - 打开摄像头:
cv2.VideoCapture(0)
用于打开默认的摄像头(通常是笔记本电脑的内置摄像头)。 - 读取摄像头帧:在while循环中,我们不断读取摄像头的每一帧图像,并进行检测与绘制。
- 图像格式转换:由于OpenCV读取的是BGR格式的图像,而MediaPipe需要RGB格式的图像,因此我们在这两个步骤之间进行了颜色空间转换。
- 姿态检测:通过调用
pose.process()
方法对图像进行处理,检测出人体的姿态。 - 绘制关键点:如果检测到了人体姿态,则使用
mp_draw.draw_landmarks()
方法在图像上绘制关键点及连接线。 - 显示检测结果:使用
cv2.imshow()
函数将处理后的图像显示出来。 - 退出机制:当按下'q'键时,退出循环并释放摄像头,关闭所有OpenCV窗口。
总结
本文介绍了简单的人物肢体识别。人物肢体识别将会有非常大的应用场景,如:各类沉浸式体感游戏(eg.元神、黑神话等);肢体预测(预测是否可能有暴力肢体行为发生、预测老人摔倒可能性等);辅助训练人形机器人学习自然肢体行为(采录大量人类真实四肢行为,训练机器人,使其更自然)